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Abstract

The primary purpose of the research presented in this thesis is to investigate
the extent to which amenability in Banach algebras is reliant on amenability in
locally compact groups. One of the first results proven on amenability in Banach
algebras was the equivalence of the amenability of a locally compact group G with
the amenability of its group algebra L'(G). Other instances of amenability in Banach
algebras can then be demonstrated by the use of certain constructions which preserve

amenability.

It is conceivable that we might be able to obtain a characterization of the
sort “A Banach algebra 2 is amenable if and only if there is a construction that
starts with amenable group algebras, and proceeds at each step via a construction
that preserves amenability to finally arrive at 2.” Several such constructions are
attempted in the first three chapters of the thesis, where it is shown that none of

them achieve the desired characterization of amenability.

In the course of this analysis, an incidental result is obtained on the range of
a homomorphism between two group algebras. This is a complete characterization
that implies, amongst other things, that the range of a homomorphism between
commutative group algebras is closed. The fourth chapter deals with possible
generalizations of this result—concentrating on conditions on Banach algebras 2 and
B which ensure that an algebra homomorphism v : 2 — B whose range is dense in
‘B is onto. Several results are obtained, displaying situations in which a dense-ranged
homomorphism is necessarily onto, and other situations where this is not the case. A
significant conjecture made here is that if v is a dense-ranged homomorphism from

an amenable Banach algebra into a commutative group algebra, then v is onto.

The appendices deal with problems further removed from classifying amenabil-

ity. Appendix A deals with the problem of finding a characterization of the range
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of a homomorphism between the measure algebras of two locally compact Abelian

groups. Some positive results are obtained, similar to the characterization of the
range of a homomorphism between commutative group algebras, and there are in-
dications that there may be a procedure which applies generally. This problem is
conjectured to be related to the problem to which a small contribution is made in
Appendix B—that of finding a Banach space complement to an ideal in a group

algebra.
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Chapter 0. Introduction

The development of the theory of Banach algebras has been greatly influenced
by ideas from harmonic analysis. This is particularly the case for amenability in
Banach algebras—the term itself originated from the property of amenability in lo-
cally compact groups, due to the equivalence of the amenability of a locally compact
group G and the amenability of its group algebra L'(G). It has been this relationship
between amenability in locally compact groups and amenability in Banach algebras
that has provided many of the known examples of amenable Banach algebras—the
amenability of these algebras can be related to that of certain amenable group alge-
bras via constructions that preserve amenability. In the first three chapters, we will
consider several such constructions, and determine the extent to which they can be
used to characterize amenability. In the remainder of this thesis, Chapter 4 and the

appendices, we investigate generalizations of some incidental results from Chapter 1.

0.1. Definitions, Notation and Conventions

The notational conventions and basic definitions used in this thesis are sum-

marized below.

The notation for sets and functions is standard, with the following possible
exceptions. If A and B are sets, we will write A C B to signify that A is a subset
of B, reserving the notation A C B for when A # B. The relative complement
of B in A will be denoted A \ B, whilst the symmetric difference of A and B is
defined to be AA B = (A\ B)U (B \ A). If {A;}ic1 is a family of sets, then the
disjoint union of these sets is defined to be |J;{t} X Ai C I x (Uier 4i), and will
be denoted |JJ;¢; Ai. We will usually consider each A; to be a subset of Uiex Ai- The
cartesian product of {A;} will be denoted [[,c;Ai. f f: A— Bandg: A4 - C

are functions with g(a;) = g(a;) = f(a1) = f(az), then f o g7' will denote
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the function g(A) — B given by f o ¢7'(g(a)) = f(a). If A C B, XpiB = C
will denote the characteristic function of B, given by x,(z) = 1, if z € B, and
X4(z) =0,iffc € A\B.If AC Band f: B — C is a function, the restriction of
f to A is denoted f|4 : A — C. This restriction mapping f — f|4 will be denoted
pB.4, O pa. An extension of a function g : A — C is a function ¢’ : B — C such

that ¢g'|4 = g. We denote the cardinality of a set X by | X|.

Topological concepts and notation are also mostly standard. All topological
spaces considered are assumed to be Hausdorff. By a neighbourhood of a point z in
a topological space, we mean a set V C X such that there is an open set U with
x € U C V. A clopen set is one that is closed and open. If {X;}.e1 are topological
spaces, their disjoint union is X = JJ;; X with the unique topology such that each
injection X; — X is a homeomorphism onto a clopen set. If X and Y are locally
compact spaces, amap f : X — Y is called proper if f™(C) is a compact subset of
X, whenever C is a compact subset of Y. (cf. [7, 1.10].) Note that while n is often

used to index a net, this does not imply that the net is a sequence.

The groups, linear spaces and algebras considered herein, generally will have a
topology (although we may consider the discrete topology on a group) and so by
a homomorphism, we will mean a continuous homomorphism. Similarly, epimor-
phisms, monomorphisms, isomorphisms and automorphisms will be assumed to be
continuous. For Banach spaces and Banach algebras, the last two of these auto-
matically have continuous inverse, by Banach’s Isomorphism Theorem. For groups,
a topological isomorphism is one with continuous inverse, and an automorphism
is assumed to be a topological isomorphism. The relation = used between groups,
normed linear spaces or normed algebras will indicate the existence of a bicontinuous
isomorphism. If we want to consider morphisms that are not necessarily continuous,
we refer to algebraic morphisms. Also, when we speak of a quotient of a topological
group (respectively linear space, algebra), we mean a quotient of that group by a
closed normal subgroup (respectively closed linear subspace, closed two-sided ideal.)
Quotient mappings will always be denoted Q x, where X is the subgroup, subspace,

or ideal by which the quotient is taken.
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Banach space notation and theory will also be standard. All Banach spaces will
be vector spaces over the field C. We will use X* for the dual of a Banach space X,
and consider X C X** in the natural way. If 7 : ¥ — 2) is a continuous linear map-
ping. then we denote the adjoint of T by 7" : 9* — X*. If z € X, f € X7, we may
use (z, f) or (f, z) for f(z). If S C X, weuse St for{ f € X: (z,f) =0(z € S) },
and if S C X*, we use *S for ¥ N S*. If {¥X;}ic1 is a family of Banach spaces, we
define the co-direct sum and the % direct sum (for 1 < p < o0) of these spaces by

Dy % = {{rdia € [[5 el )i € o}

EBp X = {{I;}iex € HI" Hloilz i € gl’(][)}

i€l i€l

respectively. With norms ||{1',}||0 = sup|z;| and "{I,}"p = (Z":c,-"p)l/p respec-
tively, these are Banach spaces. We will usually consider each X; as a subspace of
these direct sum spaces in the natural way. When I = {1, 2}, we will use X; @, X;
and X, @, X, for these spaces, respectively. If X is a Banach space with closed
subspaces X; and X, the internal direct sum of X; and X; is only defined when
¥,NX; = {0} and X, + X; is closed in X, in which case it is defined to be X; + X,
and denoted by X; @ X;. With any of the direct sums, we can consider a direct
sum of operators. There are two cases we will use—the first where we have linear
homomorphisms Ty : Xx — Qi (r =1 < k < n),in whichcaseT =T1®--- BT, :
D; Xk — QB'I' s is given by T'(z1, . .., zn) = (Ta(z1), .- -, Tn(z,)), and the second
where we have linear homomorphisms Ty : £ — i (1 < k < n), in which case
T=T1®--&T,: X — @ Dxis given by T(z) = (Th(x), ..., T.(z)). It will be
clear from the context which of these is intended.

We denote the algebraic and projective tensor products of Banach spaces X and
2 by X ® D and X ® 2, respectively. These are as defined in [8, section 42]. In
particular, ¥ ® 9 is the completion of ¥ ® 2 with respect to the projective norm,

given by

Ju| = inf{ > lzelloe] : o€ No{adt € X {ui}l € Dyu= > @y }
k=1

k=1
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If X;, 9, are closed subspaces of X, 2) respectively, then the natural injection
% ®9: — X ®9 has norm 1, but need not be an isometry. If T, : X, — 2,
(r = 1, 2) are continuous linear mappings, then we have a continuous linear mapping
Ti®T:: %1 ® X; — D1 @Y, defined by (T1 ® T2) (21 @ 25) = (Ti(21)) ® (Ta(22))
and extended by linearity and continuity. Then ||T1 ® T2" < "Tl " "T2||, and if
each T, has range dense in 2),, then 77 ® T, has range dense in 2); ®Y,. If
(X,)) and (Y, ) are measure spaces, then L'(X,)\) ® L'(Y,n) is isometrically
isomorphic to L'(X xY, Ax u), via the natural identification (f®g¢)(z,y) = f(z)g(y)
(f € L'(X,)), g € L'(Y,p),z € X,y €Y).

The notation for specific normed and Banach spaces is standard, with the
possible exceptions that if X is a locally compact space, then Cgo(X) will denote
the space of continuous functions X — C with compact support and Cy(X) will
denote the space of bounded continuous functions X — C. When X is discrete,

these are coo(X) and £°(X), respectively.

The following is a summary of the Banach algebra theory and notation we will
be using in the sequel. Again, we assume that the underlying field is C. A wunital
Banach algebra 2 is one with a unit, denoted eq or e, and if 2 is a non-unital, the
unitization of A is Ax C with the product (ay, z1)-(a1, z2) = (a1a2+ 2102+ 2204, 21 22).
This will be denoted 2*. An approzimate left identity (respectively approzimate right
identity) for A is a net {e,}neca such that for each a € A, e,a — a (respectively
ae, — a). An approzimate identity is a net {e, }nea that is both an approximate
left identity and an approximate right identity. We will mostly be concerned with
bounded approximate identities. If 2 is a Banach algebra, we denote by 2°° the
algebra 2 with reversed product a x b = ba (a,b € ). If {U;}ier is a family of
Banach algebras, then %o 2; and %p 2; are both Banach algebras, with product
defined pointwise. These are commutative if and only if each 2; is commutative, and
unital if and only if each 2; is unital and I is finite. If 2, 2, are closed subalgebras
of a Banach algebra 2, then A; @,, the internal direct sum of 2; and 2,, is defined
when 2, @ 2, is defined as a direct sum of Banach spaces, and 7,2, = z,z; = 0

for all T E ml,l‘g € ng.
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If A is a commutative Banach algebra, we call the space of nonzero homo-
morphisms A — C the carrier space of 2, and denote this ®4. Then &y C A",
and with the relative weak* topology, ®q is locally compact. If A = @, 2; or
A = @, then @y is naturally identified with |J;; ®a,. The Gel’fa;ze;' trans-
form of'E;n element a € 2 is denoted @ € Cy(®a), and is given by a(p) = (a,p).
The Gel’fand transform is a homomorphism A — Cp(®q). We say A is semisim-
ple if the Gel’fand transform is a monomorphism. If S C ®g, the kernel of X is
Z(S) = {a € A : a(S) = {0}} = N, eskerp = *S. Clearly Z(S) is a closed ideal
of A. If X C 2, then the hull of X is Z(X) = {¢ € ®q : p(X) = {0}} = ¢a N X
Since ¥* is weak* closed, Z(X) is a closed subset of X. If S C ®q is the hull of
some X C 2, then we say that S is a hull in ®g, in which case S = ZZ(S). The
hull-kernel topology on @ is the topology whose closed sets are the hulls in ®4. In
this topology, closure is given by E — ZZ(FE). A commutative Banach algebra is
regular if the hull-kernel topology on @4 coincides with the relative weak* topology.

A hull § C @4 is a set of synthesis (or spectral synthesis) if Z(S) is the only closed
ideal of 2 whose hull is S.

If 2 is a Banach algebra, a left (respectively right) Banach 2-module is a Banach
space X that is also a left (respectively right) 2A-module and such that the bilinear
form (a,z) — a - z (respectively (z,a) — z - a) is continuous. We call this bilinear
form the left (respectively right) module multiplication. A Banach 2A-bimodule is an
2-bimodule that is both a left and a right Banach 2-module. If X is a left Banach
2A-module and 2) is a right Banach 2-module, X" to be a right Banach 2-module

and 9" to be a left Banach A-module, and ¥ ® 2 is a Banach 2-bimodule, where

we define the module multiplications on these by :

(z,f-a)=(a-z,f) (e z€X feX),
(ya-9) =(y-a,9) (a€eWAyeD,ge),

and (z®y)-a=2zQ (y-a),
a-(z®@y)=(a-2)Q@y (acUAzecXye).
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In particular, if X is a Banach %-bimodule, X* is also a Banach %-bimodule. Such a
bimodule we call a dual Banach 2-bimodule. A left A-module morphism is a linear
morphism ) between left A-modules X and 2) such that ¢(a-z) = a-z. Similarly we
define right 2-module morphisms and 2-bimodule morphisms. There is a natural
2A-bimodule morphism 7 : A ® A — A determined by putting 7(a ® b) = ab, and
extending by linearity and continuity. The mapping 7 can also be viewed as a left
A @ A°P-module morphism A ® A® — A, where we define the left module product
by (a ® b) - ¢ = abc (a,b,c € ), extended by linearity and continuity. It follows
that ker 7 is a closed left ideal of 2 ® 2A°P, which we call the diagonal ideal of .

Let G be a group. We will notate the group product on G either additively or
multiplicatively, depending on whether the groups we are considering are assumed to
be Abelian or not. It will be stated in the text if additive notation is to be assumed.
In either case, e will be used for the identity element of G. (Except when we are
considering specific groups, such as R, Z, which have unit 0, and T, which has unit 1.
If z € G, we define the function of left (respectively right) translation by = to be
the function G — G given by ,7(y) = zy (respectively 7,(z) = zy). If f: G - X
is a function into some set X, we define the left and right translates of f by z to

be .f = fo a7t and f, = f o 7;, respectively. Suppose X is a set of functions on

G. We say X is left (respectively right) invariant if . f € X (respectively f; € %),

for each f € X and each z € G. If X is both left and right invariant, we say that
X is bilaterally invariant (or invariant). Now, if ¥ is a function from X into any
set S, and X is left (respectively right) invariant, we say that ¥ is left (respectively
right) invariant if U(f) = U(.f) (respectively ¥(f) = W(F,)), for each f € X
and each r € G. If X is invariant, an (bilaterally) invariant function on X is one
that is both left and right invariant. If G is a locally compact group, Ag (or A) will
denote the left Haar measure on G, that is, the unique (up to multiplication by a
positive constant) left-invariant positive linear functional on Coo(G), and Ag will
denote the modular function on G, which is the unique homomorphism G — R*
such that A\g(Xz) = Ag(z)A\g(X) for each Borel X C G and each z € G. We
consider L'(G) € M(G) = C4(G) via (, f) = [ ¥(2)f(z) drc(z) (¥ € Co(G)).
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If f,g : G — C are equal \g-almost everywhere, then so are each of the pairs . f,
=g and fz, g.. Hence, for 1 < p < oo, we can define the left and right translates
of f € LP(G), and we can apply the concepts of left/right/bilaterally invariant sets
X C L?(G) and left/right/bilaterally invariant functions with domain X.

The spaces of bounded left uniformly continuous functions, right uniformly
continuous functions and uniformly continuous functions G — C we denote UC)(G),

UL,(G) and UC(G), respectively.

We consider convolution multiplication on M(G), given by (¥, u; * pp) =
Jo Jo ¥(zy) dui(z) dpa(y) by which M(G) is a Banach algebra and L'(G) is a closed
ideal of M(G). If H is a closed normal subgroup of G, then Ty will denote the map
M(G) — M(G/H) given by (¢, Ty ( = [, ¥oQudu (¥ € Co(G/H)). Note that
here, ¥ o Qy is bounded and continuous, but may not lie in Co(G). However, since
u is finite and regular, the integral is defined. As discussed in [32], Ty is an algebra

epimorphism with "TH" =S ANS0, Ty — TH|L:(G) maps L'(G) onto L'(G/H).

If G is a locally compact Abelian group, we have a dual group G =T, the set of
all continuous homomorphisms G — T, with the topology of uniform convergence
on compact subsets of G. We will use (z,7) for y(z) (z € G,y € TI'), and since
we can identify I' with G, we may also denote this (7, z). Throughout, whenever a
locally compact Abelian group G (or Gy, G2, G, .. .) is specified, it is assumed that
G has dual, which will be denoted T' (or I3, I, ', ...). Conversely, if we specify
a locally compact Abelian group I it is assumed that I' has dual G. The Banach
algebras L'(G) and M(G) are commutative and semisimple, and L'(G) is regular.
The map I' — L*(G) given by 4 + ¥ maps homeomorphically onto ®;1(¢), and
in this sense, we identify I' with ®11(g). The Gel’fand transform on LI(G) is thus
identified with the Fourier transform f — f, where f fc: (z,7) drg(z).
Similarly, if we consider Cy(G) as a subspace of M*(G) via (p, = fG F du, then
we obtain an injection I' — ®,7(g). If we thus identiry I with a subset of ®,7(c), then

the weak* topology from M(G)*, when restricted to T', is certainly no weaker than

the group topology, and since each ¢ € M(G) has £ a continuous function on I, the
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topologies coincide. The Fourier-Stieltjes transform is then obtained by restricting
the Gel’fand transform of a measure p € M(G) to I. In this case, the notation f will
denote the Fourier-Stieltjes transform, rather than the Gel’fand transform, unless

otherwise stated. Put A(T) = L'(G)” and B(T) = M(G)~, each with pointwise

multiplication and norms given by If AD) = ||f“u(c) and "[‘"B(r) = ",u"M(G). We

call these the Fourier and Fourier-Stieltjes algebras on I, respectively. Then A(T)
and B(T) are algebras of functions isometrically isomorphic to LY(G) and M(G).
We have L'(G) C Co(T') and M(G) C UC(T'), and if we denote I' with its discrete
topology by I, then B(T') = B(Iy) N C(T'), and "F"B(r) = "FIB(m (F € B(IN)).
Let H be a closed subgroup of G. Then H is open if and only if H is
clopen. The indez of H in G is [G: H] = |G/H|. The annihilator of H (in T')
is Annp(H) = {7y € T : (z,7) = 1(z € H)}, a closed subgroup of I'. We
have that AnnG(Annr(H)) = H and H is compact if and only if A = Annr(H)
is clopen. We identify H with T/A and consequently (G/H)~ with A. Then the
epimorphism Ty : M(G) — M(G/H) corresponds to ps : B(T) — B(A), so that
B(A) = pa(B(T)), which we denote B(T)|s. Similarly, Ty : LG) —» L'(G/H)
is an epimorphism, so A(A) = pa(A(T)) = A(T)lx. We call a set E C G a coset
in G if E = 7,(H), for some z € G, and some subgroup H of G. A subcoset of a
coset E is a coset that is a subset of E. Since 7, is a homeomorphism, E is closed
(respectively compact, clopen) if and only if H is closed (respectively compact,
clopen). A nonempty set E C G is a coset if and only if £+ E- E™ C E, then with
€ FEand H=E-E?, Hisasubgroup and E = Hz. If E is a closed coset in a
locally compact Abelian group I', say £ = 7,(A), define the Banach algebras

A(E) ={f € Co(E) : for. € A(A)} and B(E) = { F € C(E) : For, € B(A) },

with pointwise product, “f“A(E) = "fo'r, and “F'B(E) = ||F0‘r, Clearly

"A(A)’ "B(A)'

these are Banach algebras isometrically isomorphic to A(A) and B(A), respectively,
and we can identify E with ®4g). Consequently, we will be able to take any result

concerning the Banach-algebraic properties of the group and measure algebras, and
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apply it to these algebras. In particular, A(T') and B(T') are translation-invariant,
so that A(E) = A(T)|g and B(F) = B(T)|e.

If {G;}ier is a family of locally compact Abelian groups, their product is the
group [].c; Gi with the product topology. In the case : = {1,2}, we denote
this Gi X G,;. The direct sum of {Gi}ie1, denoted ) . Gi, consists of those
{z:} € [l;c1Gi such that all but finitely many z; are e. We will only consider
such a group in the case where each G; is discrete, in which case )., G; is discrete.
If H; and H, are closed subgroups of a locally compact Abelian group G, then
H, & H, is defined to be H, H, only when H; N H, = {e} and the isomorphism
H, x H, — H,H, given by (z,y) + zy is a homeomorphism.

The numbering in this thesis is on three levels, the first part being a numeral
indicating a chapter or a letter indicating an appendix. The second number indicates
the section within the relevant chapter or appendix, and the third number indicates
the subsection, which will consist of a single theorem, proposition, lemma, definition,
or example. Subsections are numbered consecutively through a section, so that there
will not be a Theorem 1 and a Proposition 1 in the same section. All numbers will

be cited in any cross referencing, whether within a section or between chapters.

0.2. Amenability and Property (G)

Suppose G is a locally compact group and ¥ is a subspace of L*(G). A mean
on X is a linear functional M on ¥ such that for each f € X with rng f C R,
ess inf e f(z) < M(f) < esssup,cq f(x). (If X is a subspace of Cy(G) C L=(G),

we may replace “essinf” and “ess sup” by “inf” and “sup”.) Note that if we give X

the norm from L®(G), then a mean is continuous with "A[” < 1. If1 € X, then

M € X" is a mean if and only if [M| < 1 and M(1) = 1.

We call a group amenable if there exists a left-invariant mean on L*(G).
Equivalent conditions are the existence of right-invariant means and invariant means
on any of the spaces Cy(G), UC(G), UC.(G), or UCi(G). (See, for example, [17, 30,

or 33].) Another useful type of condition equivalent to amenability are the Fglner
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conditions. (See [30, Chapter 4 or 33, Section 2.7].) The particular Fglner condition
we will consider here is the existence of a summing net for G, that is, a net { K, }nea

of compact subsets such that |J,., K» = G and for each compact set U,

wp M B Knw)

well MK,)
This is shown to be equivalent to the above characterizations of amenability in [30,

Theorem 4.16].

Locally compact Abelian groups are amenable, as are compact groups. An

example of a non-amenable group is F;, the free group on two generators.

We now consider the property of amenability in Banach algebras. Many of
these basic results originated in the papers [23, 24] of Johnson, and a description
can be found in Sections 43 and 44 of [8]. Suppose 2 is a Banach algebra and X is
a Banach 2-bimodule. A linear homomorphism D : 2 — X is called a derivation
if D(ab) = D(a)-b+a-D(b). If z € X, the map D, : A — X given by
D.(a) = a-z — x - ais a derivation. Derivations of this type we call inner. We say

that 2 is amenable if any derivation into a dual U-bimodule is inner.

This is based on a topological version of the Hochschild cohomology of non-
topological associative algebras. Let X be a Banach 2-bimodule and let B™(2, X)
be the space of bounded n-linear mappings A — X. (We identify B°(2, X) with X.)
Now define 6, : B"1(2A, X) — B"(Y, X) by

—

n—

SRl o= Dl ) (—l)jT(al, RPN R S

N

1
—-1)"T(ay,...,a,-1) - @y

e,

+

where T € B" (2, X) and ay,...,a, € A. A standard property of these mappings

is that 6"t 0 6" = 0, so that we have the complex
0 b0, x 8, oy, %) b2, B2, %) L, ...

The n'™ cohomology group of this complex is H"(2,%X) = keré"t!/rngé™. In
particular, if z € X, then 6'(z)(a) = a-z — z - a and if z € B'(2, X), then
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62(T)(a1,a2) = a1T(a;) — T(ay1a;) + T(a1)az, so that A is amenable if and only
if H'(A,X*) = 0 for each dual Banach 2-bimodule ¥*. It can be shown, using

standard “dimension-reducing” techniques, that in this case we have H™ (2, X*) = 0,

for all n.

The use of the term “amenable” for such algebras originated in the paper [23]

of B.E. Johnson, and is motivated by the following theorem.

0.2.1. Theorem. [23, Theorem 2.5] Suppose G is a locally compact group. Then
G is amenable if and only if L'(G) is amenable.

Again, there are several equivalent characterizations of amenability in Banach

algebras. For these, we make some further definitions.

Let 2 be a Banach algebra. An approzimate diagonal is a bounded net {d, }nea
in A ® A such that {#(d,)}nea is a bounded approximate left identity for 2 and for
eacha € A, a-d, —d, -a — 0. A virtual diagonal is an element d € (A ® 2A)™
such that for each a € A, 7**(d) -a = aand d-a = a-d. A diagonal is an
element d € A ® A such that m(d) = e € A and da = ad. (This is called a
splitting idempotent in [27], in reference to the cohomological implications of the
existence of such an element.) We now have the following theorem, obtained by
combining Lemma 1.2 and Theorem 1.3 of the paper [24] of B.E. Johnson with [13,
Theorem 3.10], a result originally due to A.Ya. Khelemskii.

0.2.2. Theorem. Suppose 2 is a Banach algebra, then the following are equiva-
lent :
(i) 2 is amenable,
(ii) there is an approximate diagonal for 2,
(iii) there is a virtual diagonal for 2, and
(iv) the diagonal ideal for 2, kerm C ARA°P, has a bounded approximate

identity.

In the case where 2 is finite-dimensional, the existence of a virtual diagonal is
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clearly equivalent to the existence of a diagonal. By results of G. Hochschild [21,
Theorem 4.1], and M.J. Liddell [27, Theorem 1.3], we have the following.

0.2.3. Proposition. Suppose 2 is a finite-dimensional complex algebra, then the
following are equivalent :

(i) 2 is amenable,

(ii) there is a diagonal for 2, and

(iii) A is isomorphic to a finite direct sum of matrix algebras M,(C).

Examples of amenable Banach algebras other than the group algebras of amen-
able groups are Co(X), for X a locally compact topological space, and K(H), the
algebra of compact operators on a Hilbert space H. These are shown to be amenable

using Theorem 0.2.1 and the following proposition.

0.2.4. Proposition. [23, 5.3] Suppose A and B are amenable Banach algebras
and v : A — B is a continuous algebra homomorphism with range dense in B. If

A is amenable, then B is amenable.

Define a Banach algebra 2 to have property (G) if there exists an amenable
locally compact group G and a continuous homomorphism v : L'(G) — 2 with
range dense in 2A. Clearly property (G) is sufficient for amenability. It is natural to

ask whether all amenable Banach algebra have property (G).

We present some basic results on property (G) which will aid us in later

sections, when we will characterize property (G) for certain Banach algebras 2.

0.2.5. Proposition. Suppose 2 and B are Banach algebras with property (G),
then A & B and A ® B have property (G).

Proof. By hypothesis, there exist amenable locally compact groups G; and G,

and continuous homomorphisms v, : LY(G,) —» %A and v, : LY(G;) — B with

mgy; = A and Tag; = B. Then vy @ v, : Ll(Gl) ® L'(G;) - A B and

n @y : L'(Gy) ® L'(G2) — A ® B are dense-ranged continuous homomorphisms,
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so it suffices to show that L'(G,) @ L'(G;) and L'(G,) ® L'(G>) have property (G).
The groups G; x G, and G, X G; X Z, are amenable with

Ll(Gl X Gg)

L'(Gy) ® L'(Ga),
L'(Gy x Gy x Zy) = LY(G; x G,) @ C
Ll

(Gy x Gs) & L' (G x Gy),

and Te, ® Tg, : L'(G1 x G2)® L'(G, x G2) — L*(G,)® L*(G,) is an epimorphism.







Chapter 1. Property (G) in Commutative
Banach Algebras

In the present chapter, we will investigate property (G) for certain families of
commutative amenable Banach algebras. As one may expect, to assess property (G)
in commutative Banach algebras, it is sufficient to consider only homomorphisms

LY(G) — 2, for G an Abelian locally compact group.

The actual Banach algebras 2 we consider are themselves subalgebras of com-
mutative group algebras, enabling the use of a result of P.J. Cohen on homomor-
phisms between commutative group algebras. Results obtained below on such ho-
momorphisms seem to be of independent interest, and suggest several possible gen-

eralizations that will be followed in later chapters.

Reduction to Abelian Groups

The sole result of this section is that to ascertain property (G) for commutative
group algebras, it is enough to consider Abelian groups. If 2 is a Banach algebra,
a commutator of 2 is an element of the form ab — ba, for some a.b € 2A. The
commutator ideal of U is defined to be the closed ideal generated by the commutators
in 2A. It is clear that the commutator ideal is the smallest closed ideal Z for which

the quotient algebra 2A/Z is commutative.

If G is a locally compact group, a commutator of G is an element of the form
zyz Ty, for some r,y € G. The commutator subgroup is the closed subgroup of
G generated by the commutators in G. The commutator subgroup of G is a closed
normal subgroup, and it is the smallest closed normal subgroup C for which the

quotient group G/C is Abelian. (See [20, Theorem 23.8].)
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1.1.1. Lemma. Suppose G is a locally compact group with commutator sub-
group C and Tc is the natural epimorphism L'(G) — L'(G/C), then ker Tg is

the commutator ideal of L'(G).

Proof. Let J be the commutator ideal of L'(G). The homomorphism T¢ has
range in a commutative Banach algebra, so any commutator of 2 is contained in
ker Tc. Hence J C ker Tc.

Conversely, by [32, 3.6.4], we have ker Tc = span{f—.f :z € C, f € L‘(G)}.
Put H={ze€G:f-.feJ, (f€ L'(G))}, a closed subgroup of G. Let
{€n}nea be a bounded approximate identity for L'(G), and let z,y € G. Forn € A,
put gn = y€n * z€n — z€n * y&, € J so that if f € L'(G), then g, *x f € J and

"(yrf —zyf) —gn * f" = "y(:f — Cn % rf)" & "yen *o(f —en % f)”
b "r(yf oy Crisk yf)" St “ren * y(f —en* f)”
< |ef —encf| + [of — enxuf] +2en] | f = en = £]

— 0.

But J is closed and translation-invariant, so . f — z,f € J and ;- f — f € J.
Hence z'yzy € H. Hence C C H and ker Tz C J. =

1.1.2. Proposition. Suppose G is a locally compact group and v : L'(G) — U is
a continuous algebra homomorphism into a commutative Banach algebra, then there

is a locally compact Abelian group G’ and a continuous algebra homomorphism

v' : L'Y(G') — A with mgv = mgv' and || = |v|.

Proof. Let C be the commutator subgroup of G, so that G' = G/C is a locally
compact Abelian group, and by Lemma 1.1.1, the commutator ideal of L'(G) is
J = kerTe. Clearly J C kerv. Now, by [32, 3.4.4], T¢ is an epimorphism
which induces an isometric isomorphism L'(G)/J — L'(G/C). It follows that
vV =voTg : L'(G/C) — 2 is a well-defined continuous algebra homomorphism,

with [/ = o] :
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Now, since locally compact Abelian groups are amenable, a commutative Ba-
nach algebra 2 has property (G) if and only if there is a locally compact Abelian
group G and a dense-ranged homomorphism L'(G) — 2. Since the emphasis of the
rest of this chapter is on property (G) in commutative group algebras, all groups
considered herein will be Abelian. For this reason, for all locally compact groups in

the remainder of this chapter, we will use additive notation for the group product.

1.2. Homomorphisms Between Commutative

Banach Algebras

Suppose v : A — B is a continuous homomorphism between commutative

Banach algebras. Then for ¢ € ®g, ¢ is a nonzero homomorphism B — C, so

@ ov = v(p) is a homomorphism A — C, that is v*(¢) € ®q U {0}. Putting
it = {npe Qg : v (@) #O}andaz v*|y, we have

(1)

el s b Za\)(‘ro):{&oa(ap) fpeY;

0 otherwise.

—

We will often abbreviate this to v(a) = a o a. If B is semisimple, (1) serves to
determine v, and so we will mainly restrict our attention to this case. The following
proposition brings together some well-known and easily obtained results concerning

such an analysis of homomorphisms.

1.2.1. Proposition. Suppose 2 and B are commutative Banach algebras and
v : A — B is a continuous homomorphism. Defining Y and a as above, Y =
@y \ Z(rngv), so that Y is an open subset of ®g and if A is unital, then Y is
compact. Also, a is a continuous, proper and closed map into Z(kerv), and if B

is semisimple, then Z(ker v) is the hull-kernel closure of a(Y).

Proof. Clearly ¢ € Z(rngv) if and only if pov = 0, so that Y = &g\ Z(rngv),

and Y is an open subset of ®g. If € is a unit in 2, then v(e) is an idempotent in B,

—_—

with v(e) = €0 a = x,, € Co(Ps), so Y is compact.
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If we give both B~ and 2" their weak™ topology, then v" is clearly continuous,
and so it follows that a is continuous. To show a to be proper, suppose C C Pq
is compact. For each ¢ € C, there exists a, € A with |99(a¢,)| > 1, so that
K, = {¢' € ®q: I&w(go')j > 1} is a closed neighbourhood of ¢. Moreover, since

a, € Co(®a), K, is compact. Similarly o (K,) = {¢' € &5 : |l/(t;,)(cp')| =

is compact. Take a finite set ¢y, . .., @, such that K, ,..., K, cover C, and then
a}(C) C a}(K,,)U---Ua™'(K,,), which is compact, so a™ (C) is compact. Then
from [7, Section 1.10.10, Prop. 15 & Section 1.10.1, Prop. 7], or by a straightforward
argument involving filters, we have that a is closed.

Clearly any a € kerv has@aoa = 0,s0 a(Y) C Z(a), giving a(Y) C Z(rng v).
If B is semisimple, then v(a) = 0 if and only if @ 0 @ = 0, and so ker v = Z(a(}"))
and Z(kerv) = ZI(a(Y)). .

It is worth noting at this stage that we are considering o as a map from Y/,
a locally compact space in its own right, into ®q. It is in this capacity that a is
closed, for even if Y is not a closed subset of ®x, Y is a closed subset of Y, and so
a(Y') is a closed subset of ®g. Similarly for any closed subset of V of Y, a(V) is

closed in @4, regardless of whether V is closed in ®.

Equation (1) also gives a necessary condition for an element of B to be in rng v,
in that for any b € rng v, we must have b(tp) = 0 when ¢ ¢ Y and i)(c,ol) = 13(592)
when ¢1. 92 € Y and a(p1) = a(p2).

1.2.2. Definition. Suppose B is a commutative Banach algebra and ~ is an

equivalence relation on U, an open subset of ®g. Define kg(~), the ~-class

subalgebra of B by
Kkg(~) = {b €B:b=0off Uand B(cpl) = i)((pg) whenever p; ~ cpz}.

The equivalence ~ will usually be given by p; ~ ¢, <= (1) = ¥(p2), where ¥
is a function with domain U. (Of course, every equivalence relation can be expressed

in this manner.) In such a case, we will use the notation xg(3)) or k(1) for kg(~),
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and &g (1) (or (1)) will denote {b: b € £®(1)}. Such subalgebras are considered
in the ninth chapter of [37] in the case where B is the group algebra of a compact
Abelian group.

1.2.3. Lemma. With B, U and ~ as above, kg(~) is a closed subalgebra of ‘B.

Proof. Clearly xg(~) = ﬂww kero N ), ~,, ker(¢1 — p;), which is a closed
subspace of B. It is also clear that xg(~) is closed under multiplication, so that

kg(~) is a subalgebra. 5

We now consider the application of these ideas to an analysis of the range of

an algebra homomorphism.

1.2.4. Lemma. Suppose 2A,B are commutative semisimple Banach algebras,
v : A — B is a homomorphism, ¥ = &g \ Z(rngv), and a = v’y : ¥ — ®q.
For b € B, we have b € x(a) if and only if b= 0 off Y and boa™ € Co(a(Y));
whereas b € tngv ifand only if b= 0off Y and boa™ : a(Y) — C is well-defined

A

and has an extension in 2.

~ is a well-defined function o(Y) — C.

Proof. Suppose & € x(a), so that bo a
Let V C C be closed, then 5(V) NY is a closed subset of Y, and since a is closed,
ao b (V)= (ho

0 ¢V, then b~

a™)7(V) is closed. Hence bo a™ is continuous. If we also have

’) is compact, and since « is continuous, (bo a™)7(V) is compact.

bo
‘(v
Thus bo a™ € Co (a(Y)). The remaining statements are clear from definitions. =

It will be shown in Section 1.5 that if 2 and B are commutative group algebras,
then rng v = k(a). To illustrate the elements needed for a proof of such a result,

we consider the following much easier result.

1.2.5. Proposition. Suppose X; and X, are locally compact topological spaces,
and v : Co(X,) — Co(X:) is a homomorphism. Let Y = X; \ Z(rngv) and

a=vy:Y — Xi, then rngv = k().
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Proof. We have Y C X, open and a : Y — X, continuous, proper and closed, so
a(Y) is a closed subset of X;. Let X;° = X; U{oo}, the one-point compactification
of X}, and define f on a(Y) U {co} to be the extension of boa™ obtained by setting
f(oo) = 0. Then a(Y) U {oo} is a closed subset of X with f € C(a(Y) U {o0}),
so by the Tietze Extension Theorem [7, 9.4.2], there is a function ¢ € C(X}°)

extending f. But then g|x, € 2 is an extension of boa™, as required. (]

1.2.6. Corollary. Suppose X is a locally compact topological space, A is a
commutative semisimple Banach algebra and v : Co(X) — 2 is a homomorphism.

Let Y = @9 \ Z(rngv) and a = v*|y : Y — X, then mgv = kg(a).

Proof. Composing v with the Gel’fand transform on 2 gives a homomorphism
V' : Co(X) — Co(Pq). Then with Y’ = ®4 \ Z(rng V') and o’ = V'|y, we actually

have Y = Y’ and a = o, so by Proposition 1.2.5, rng v’ = kcy(aq)(). However,

rng v’ = (rgv)” C A so ka(a) = ﬁﬂfcco(%)(a) = (rng v)" . By the semisimplicity

of A, ky(a) = rng v. (]

s Homomorphisms Between Commutative

Group Algebras

In this and the next two sections, we will develop arguments leading to a result
analogous to Proposition 1.2.5 for homomorphisms between commutative group
algebras. Central to this development are results of P.J. Cohen on certain algebraic
properties of the Group and Measure algebras of locally compact Abelian groups.

These can be found in the original papers [10, 11], or, perhaps more conveniently,

in the third and fourth Chapters of the book [37] of W. Rudin.

1.3.1. Definitions. If ' is a locally compact Abelian group and E is a closed
coset in T', the coset ring of E, denoted R(E), is the Boolean ring generated by the
relatively open cosets in E. A map ¢ : E; — E, between two cosets is called affine
if (71 + 72 — 73) = ¢¥(n) + ¥(12) — ¥(43) for any v1,72,73 € Er. f U C E; and
¥ is a map U — E, such that there exists a coset F in E; with U C E and an
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affine map ¢’ : E — E, extending ¢, then we say that ¢’ is an affine ertension of
Y. A map ¢ from X C FE, into E, is called piecewise affine if there exists disjoint
515+ % 557 € R(E;) ‘such'that X ‘= UT Sk and each 9|s, has a continuous affine

extension. Note that in particular this implies X € R(E;).

We now state the two vital Theorems of P.J. Cohen. Each is stated in terms
of group and measure algebras, but it is worth remembering that the Fourier and
Fourier-Stieltjes algebras on closed cosets are isomorphic to these algebras, and so

these theorems can easily be restated in terms of these algebras.

1.3.2. Theorem. (10, Theorem 1] If G is a locally compact Abelian group, then
a measure p € M(G) is an idempotent if and only if i = x for some S € R(T).

1.3.3. Theorem. [11, Theorem 1] If v : L'(G:) — M(G;) is a nonzero algebra

homomorphism, then there exists a set Y € R(I;) and a piecewise affine ma
P

a:Y — Iy such that for each f € L'(G,), 1//(?) = foaon Y and I//(?) ==l

off Y. Conversely, any such piecewise affine map determines a homomorphism

v: L'(G,) = M(G;), and tngv C L'(G,) if and only if a is proper.

Before proceeding further, we should note that the apparent conflict in the
conclusions of Theorems 1.2.1 and 1.3.3 is easily resolved. If v : L'(G,) = M(G,)
is a homomorphism such that rngv ¢ L'(G,), then we seem to have on one hand
that a is proper, whilst on the other that it is not. The difference in the two
theorems is in the domain of a. Indeed, if Y = Prr,) \ Z(rngv) and & = vy
are as in Theorem 1.2.1, and Y, a are as given by Theorem 1.3.3, then Y = ¥era s
and @ = aly; but since I'; is not necessarily closed in ®,7(c,). @ need not be proper
when & is. Given this, it is not surprising that the two versions of a have different
topological properties. This can be seen as an illustration of certain differences

between the Gel’fand and Fourier-Stieltjes transforms on measure algebras.

Now that we know the nature of a homomorphism L'(G;) — L'(G,), it is

opportune to consider the steps required to show that x(a) = rngv for such
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homomorphisms. By Lemma 1.2.4, what is required is to show that for each

f € kla), foa™ € Co(a(Y)) has an extension ¢ € L'(G,)” = A(Ly). This

involves determining the nature of the set a(Y'), the behaviour of f o a™ on a(Y),
and the behaviour required of g. For the first two of these, we need to know more
about the coset ring and piecewise affine maps. We will devote the next section to
this. The behaviour required of g is readily accounted for—much is known of the
Fourier algebra on a locally compact Abelian group. One vital property enables us

to attain the desired result for certain a at this stage.

1.3.4. Lemma. If Y is an open coset in I, and a : Y — I is affine, proper and

continuous, then for any f € k(a), fo a™ has an extension in A(T}).

Proof. Since Y is clopen and a is closed and affine, a(Y) is a closed coset. For
% € Y, E = a'{a(y)} is a compact subcoset of Y, and so A = E — v is a
compact subgroup of ¥ — ~o. Clearly f € A(T3) is constant on cosets of A, so
by [37, Theorem 2.7.1], f is concentrated on the open subgroup H = Anng,(A)
of G3. This means that f = 0 off H and f; = fly € L'(H). Now, by [37,
Theorem 2.1.2], H = I, /A via (z,7 + A) = (z,7) (z € H,v+ A € TI3/A), and so
Ay +A) = [ file)(z,y + A)de = [, f(z)(z,7)de = f(v). Hence if we let Q4
be the quotient map I, — I3/A, then fl 8 @i = f Putting ¥; = Qa(Y), fl is zero
off Y1, a clopen coset in ', /A, and fllyl € A(hh).

Now, a 0 Q3! : Y7 — a(Y) is a well defined affine bijection. Furthermore,
a o Q3 is continuous and proper, and hence is an affine homeomorphism onto
a(Y). Thus f — f o ao @} defines an isomorphism from A(a(Y')) onto A(Y}),
5776 o e
A(a(Y)) = A(T1)|acy), so it follows that f o a™ has an extension in A(IL}). .

€ A(a(Y)). Since a(Y) is a closed coset in I,

It may be of interest at this stage to consider the action of v in such a case.
We will only consider the situation where Y is a subgroup and « is a homomor-

phism. The case where Y is a coset and « is affine is then formulated by noting
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that translation in the Fourier algebras A(I}) and A(T}) corresponds to pointwise

multiplication by a character in L'(G,;) and L'(G,).

Let H; = Anng, (a(Y)), H; = Anng,(Y), and let A and H be as above. Then
H C G, and Y C T, are clopen subgroups, H, C G, and A C T} are compact
subgroups, and a(Y) C I and H,; are closed subgroups. We have A = ker a, so
Y = aoQy : Y/A — oY) is a topological group isomorphism whose adjoint
¥* : G1/H, — H/H, is also an isomorphism.

Let Ty, : L'(G1) — L'(G:1/H,) be the natural epimorphism, as discussed by
Reiter [32, Section 4.3]. Let ¥ : L'(G,/H,) — L'(H/H;) be the isomorphism
induced by ¢, and let Iy, : L'(H/H;) — L'(G2) be the natural monomorphism
given by Iy u,(f)(z) = f(z + H;) if £ € H and Iyu,(f)(z) = 0 otherwise.

Then for ¢ : a(Y') — I the inclusion mapping, we have a = ¢ 0 ¥» 0 Q4, and
a corresponding decomposition v = Iy, o ¥ o Ty,. (Here ¢ corresponds to Ty, ,

etc.) Hence if g € L'(G,), v(g) is given by

T HT =—=-*plgl =W ale.

and z € H with,say z' € G; suchthat ¥°(z' + K;) =z + K,

= v(9)(z) = Tx,(9)(z" + H)
d /A gl + (1) ae.

1.3.5. Corollary. Suppose T, is connected, v : L'(G,) — L'(G,) is a nonzero
homomorphism, Y = I} \ Z(rngv) and a = v*|y. Then for some open subgroup

H of Gg,

mgv = k(a) = {f € L'(Gy) : f =0 off H} = L'(H).

Proof. Since I} is connected, R(I3) = {@,[3}. Let Y = I} \ Z(rngv) and
a = V'|y. Then by Theorem 1.3.3, @ # Y € R(I2) and « is a proper piecewise
affine map. Thus, by definition, Y = I3 and « is affine and Y = I,. Let A be the
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compact subgroup on whose cosets a is contant, and let H = Anng A. Then

mgv = k(a) = {f € L'(G) : f is contant on each coset of A}
= {7 €' T'G)='f'= 0ot HY,

which is a subalgebra of L'(G) isomorphic to L'(H). o

In the case where G, is also connected, this reduces to rngv = L'(G,), and
since the Euclidean groups R™ are the only connected locally compact Abelian groups

with connected dual, we have the following.

1.3.6. Corollary. If G, = R" for some n > 0, then v is onto. B

1.4. The Coset Ring and Piecewise Affine Maps

As a starting point for considering general piecewise affine maps, we have from
the discussion in [37, Section 4.3.4] (cf. [38]), that any set in the coset ring of a

locally compact Abelian group I is a finite disjoint union of sets in

Ro(T) = {Eo\ (UE;,) :m > 0, Ey,..., E, are open cosets in I
1

and each of E,, ..., E,, are of infinite index in Eo}.

If £ is a closed coset in a locally compact Abelian group, then we can similarly define
Ro(E) and decompose elements of R(E) into a finite disjoint union of elements of

Ro(E). In what follows, it will be taken as understood that if we introduce a set

in the manner “Suppose S € Ro(E), say S = Eo \ (U] Ex), .., then each Ej is
an open subcoset in E, and each of F,, ..., E,, are open subcosets of infinite index
in Eo.

We also define R4(I'), the discrete coset ring to be R(I;), being the Boolean
ring generated by all cosets in I'. Also define R.(I') = {X € Rq4(T) : X is a closed
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subset of I'}. This is not a Boolean ring (unless T is discrete,) but we do have, by

(38, Theorem 1.7, that R.(I') = {X : X € Rqy(T')} and also

R = {U Xi:foreach1 <k<n
1

there is a closed coset Ey C I' with X; € 'R(Ek)}.

By applying the above decomposition to each X, we can assume, without loss, that
each Xj is a closed element of Ro(T's). As discussed in [28], the sets X € R.(T)
are significant when considering Banach-algebraic properties of L'(G), as the closed
ideals of L'(G) with bounded approximate identity are precisely those with hull in
R(T), and as these hulls are also sets of spectral synthesis, a closed ideal Z of L'(G)
has bounded approximate identity if and only if Z = Z(X) for some X € R.(T).

It is clear that by [37, Lemma 4.3.3], @ ¢ Ro(T'). Consider S € Ro(T), say
S =t (U;" Ek), then for all ¥y € Ey — E,

SN(S+7)=Eo\ (UEk U U(Ek+7)> € Ro(T).

Hence if E is a coset containing S, then EN (E + v) # &,s0y € E — E. Thus
Ey— FEy C FE— F and Ey C E. Hence Ej is the smallest coset containing S. We
call Ey the coset generated by S and denote this Ey = Ey(S). We now define N(S)
to be the minimum number n > 0 such that there exist open cosets Ei, ..., E, of
infinite index in Ey = Ey(S) such that § = Ep \ (U'l‘ Ek).

The above decomposition of an element of the coset ring of a locally compact
Abelian group can now be applied to obtain a characterization of piecewise affine
maps. Let ¢ : X — I be a piecewise affine map as in Definition 1.3.1, then by
performing a decomposition as above on each Sk, we can suppose that each Sk is an
element of Ro(I2). Also, each a|s, has a continuous affine extension ay : Ex — I,
for some coset Ex. Then Sy C Eg, so Eo(Sk) € Ek, and ak|gy(s,) is a continuous
affine extension of a|s,. Thus we can assume Ey = FEo(Sk). This gives us the

following result.
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1.4.1. Lemma. If X € R(I;) then v : X — I is piecewise affine if and only if
there are disjoint Sy,...,S, € Ro(I;) such that X = S, U ---U S, and for each

k, v|s, has a continuous affine extension vy : Eo(Sk) — I3. .

We now present a pair of lemmas that we will use in Section 1.5 to obtain
information about the affine maps ¥1,...,%, from ¥. Each lemma allows us to
“smudge” certain S € R(I') to cover a slightly larger set. The first lemma applies
to smudge a set S € Ro(T') to cover Ey(S), and the second applies to any S € R(T),

to cover S + A, for A a compact subgroup of T'.

1.4.2. Lemma. Let S € Ro(T) and put Ey = Ey(S). Then there is a finite
subset F of Ey — Eqy such that Eo = S + F.

Proof. Clearly any F C Ey — F; has S + F C E;. We prove that for any
S € Ro(T') there is a finite set F C Ey — Ey with S + F D Ey, by induction
on N(S). If N(S) = 0, then S = Eg, so that F = {e} suffices. Now let
n > 0 and suppose that for any S’ € Ro(I') with N(S’) < n, there is a finite
set ' C Eg — Eog with S’ + F' = Ey. Let S € Ro(T') have N(S) = n, say
S =Eo\ (U] Ex)- Put &' = Eg \ (U;™" Ex), then N(S') < n — 1, so there exists
F' with §' + F' = Eo(S’) = Eo. Then

Eo=S +F C(SUE,)+F C(S+F)U(E.+ F'),

so B\ (E.+ F')C S+ F.

Since E, is of infinite index in Ey, E,+F'—F' C Ey, so there exists vo € Eo— Eo
such that E, + 40 C E, + F' — F'. Then E, + F' and E, + (F' + o) are disjoint.
Put F = F' U (F' + ), then

S+F =[S+ F|U[S+F'+%)] 2 [Eo\ (Ex+F)]U[Eo\ (En+ (F'+7%))] = Eo,

as required. s
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1.4.3. Lemma. If S € R(I') and A is a compact subgroup of T, then there is a
finite subset F of A such that S+ A =S+ F.

Proof. Let E,..., E, be open cosets such that S is in the Boolean ring generated
by {8 - Bs pailieb S iAe (Ek — Ek), so that = is an open subgroup of T’ with
S+ = =S5. Then A N = is a relatively open subgroup of the compact group A, so
ANZ is of finite index in A. Thus there is a finite F C A with (AOE) +F = A, and
sinceSQS—{—(AﬂE) = S+E=S,wehaveS+F=S+(AﬂE)+F=S+A.

We can now apply these smudging lemmas to an analysis of proper piecewise

affine maps.

1.4.4. Lemma. If S € Ro(G) and ¢ : Eo(S) — I is affine such that ¢|s is

proper, then 1 is proper.

Proof. Applying Lemma 1.4.2, we have that Eq(S) = U (S + 7« — ), for some
Y0, Y15+ --+IN € Eo(S). If C C Ty is compact, each v € %7(C) lies in some
(S + 7% — 1), 50 ¥ — % + 70 € S satisfies (v — 1 + 1) € C — ¥(%) + (1),
giving 7 € (¥]s)™ (C = $() + ¥(%0)) + % — 70. Hence

N
7€) € U(@1s)™ (€ = ¥() + $(20)) + 7 — 70)

which is compact, so 9 is proper.

1.4.5. Corollary. If S € Ro(I2) and v : S — I is proper with an affine
extension ', then z/"(Eo(S)) is a closed coset in I} and ¥(S) € R(¢'(E0(S))).

Proof. Without loss, we can assume that 1 has domain Ey(S). Then, by Lem-
ma 1.4.4, ¥’ is proper, and so E = %'(Eo(S)) is a closed coset in I}. Now,
as in Lemma 1.3.4, there is a compact subgroup A of Ey(S) — Eo(S) such that
Y' o Qr : Eo(S)/A — E is an affine homeomorphism. Then by Lemma 1.4.3,
there is a finite ¥ C A with S + A = S + F, giving S + A € R(Eo(S)). Hence
"Qa(S) € R(Eo(S)/A) and (S) = ¢'(S) € R(E). u
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If we now apply this result to each piece of a proper piecewise affine map, we

obtain a significant property of the range of such a mapping.

1.4.6. Corollary. If X € R(I;) and ¢ : X — I} is proper and piecewise affine
then Y(X) € R (I1).

Proof. This follows immediately from Lemma 1.4.1 and the observation that with

notation as in Corollary 1.4.5, R(E) C R4(I}). ]

We now present some results on the coset ring that are easy extensions of [37,
Theorem 4.3.3], which states that the union of a finite number of cosets of infinite

index in an Abelian group G is a proper subset of G.

1.4.7. Lemma. Suppose G is an Abelian group and E,..., E, are cosets in G
such that G = U'; Ey, then G is the union of those of the E) that are of finite

index in G.

Proof. Let J C {1,...,n} be those k such that Ej is of finite index in G. For
k € J,let H. = Eyx — Ei a subgroup of finite index in G. Thus H = ﬂJ Hi is a
subgroup of finite index in G. (If J = @, put H = G.) Now, if z € G, then for
each k ¢ J, (H + z) N Ej is empty or a coset of infinite index in H, so by [37,

Theorem 4.3.3], U,g;(H + )N E} is a proper subset of H 4+ z. Thus for some k € J,
(H+z)NE; # @, and hence H + z C Eix. Thus H + z C UkeJ FEy, and so we
have that G = U,cEJ 1975 m

1.4.8. Corollary. Suppose G is an Abelian group and E,,...,E, are cosets in
G such that G = |J] Ex, then for some 1 < k < n, Ej is a subgroup of finite

index in G.

Proof. By Lemma 1.4.7, we may suppose that each E) has finite index in G. Then

e is an element of some Ej, which will be a subgroup. =
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1.4.9. Corollary. Suppose I and T are locally compact Abelian groups and
a : I3 — T is a piecewise affine map. Then there is a set S € Ro(I}) such that
Eo(S) is a subgroup of finite index in T; and a|s has a continuous affine extension

ag : Eo(S) — IN. Further, if « is proper, then so is aq.

Proof. Combining Lemma 1.4.1 with Corollary 1.4.8 gives the existence of S and

ap. The last part follows from Lemma 1.4.4. ]

It was demonstrated above that the range of a proper piecewise affine map
a : Y — I} must be an element of R.(I1). To obtain a similar result for a general
piecewise affine map, we need a generalization of part of Lemma 1.4.3 to show that
S+ A € R(I') when S € R(T') and A is a closed subgroup of I'. Such a result is not
immediately required for the consideration of homomorphisms between commutative
group algebras. It is included here to give a more complete picture of piecewise affine

maps, and to provide a basis for some developments in Chapter 3.

First we give some results which could be proven using combinatoric arguments,
but yield much more readily to a proof using the connection of the coset ring with

the Fourier-Stieltjes algebra.

1.4.10. Lemma. Suppose T is a locally compact Abelian group and S € R4(I)
is a clopen subset of I'. Then S € R(I') and HXS"B(I‘) = "xs"B(r,,)'

Proof. By [37, Theorem 1.9.1], B(T') = B(I3) N C(I'), with "F|B(r) = "F"B(Fd)

for any F' € B(T'), from which the result follows. [

1.4.11. Lemma. If A is a closed subgroup of a locally compact Abelian group T,

and Q : I' — I'/A is the quotient mapping, then

RIT/A)="1Q8)~ 5 e R\, S TA=75}

and if S € R(I') has S+ A = S, then "XS"B(F) = "xQ(s)"B(FM).

Proof. Clearly R(I'/A) C {Q(S): S € R(T), S+ A = S}. Conversely, suppose
S € R(T) is such that S+ A = S. Let u € M(G) have 4 = x4, then by [37,
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Theorem 2.7.1], p is concentrated on H = Anng(A). Thus, if up is the restriction
of u to H, given by ug(E) = p(E N H), then pg € M(H), and gy € B(T'/A) is
given by fig(y + A) = fi(y). Thus pg is an idempotent measure, and jig = Xo(s)
0 Q(S) € R(T/A). Finally, Julyq) = Wl(G) = lul(H) = lusl(H) = ity

as required. (]

The following result can be obtained from [38, Theorem 1.3]. We include a

proof of it here as a basis for a later result, where we try to estimate the norm of

Xg,= in B(T).
1.4.12. Proposition. If S € R(T') and = is a subgroup of T, then S+= € R(T).

Proof. Clearly S + = is clopen, so by Lemma 1.4.10, we only need show that
S+= € R4(T'), so we can assume that I is discrete. Clearly it suffices to demonstrate
the case S € Ro(T'), say S = Ep \ (U;1 Ek). For 0 < k < n, put Ay = Ex — E;.
Let J C {1,...,n} be those k such that A; N = is of finite index in Ag N =, and let
S’ = Eo \ (Uxej Ex)- Then

Y€ B\ (S+E) <= v+ (MnE)C|JE
1

<= ANEZ=|JE—7)N(ANE).
1

Moreover, each (Ex — 4) N (Ag N Z) is either empty or a translate of Ax N =, which
will be of finite index in Ag N = if and only if £ € J. Thus, by Lemma 1.4.7,

n

UE: =)0 (40nZ) = [J(Bx = 7) n (A N E),

1 kel
and it follows that S + (Ao NZ) = S + (Ao N 2).

Put Ay = (iey Ak, so that S' + Ay C §" and A;N = is of finite index in Ao N =.
Let F' C = be such that (AyNZ)+ F = A¢NZE, then S+ (AoNZ) = §'+ (Ao NZE) =
S+ (A NE)+ F =8+ F € R(D).




The Range of a Homomorphism Between Commutative Group Algebras 31

Actually, since S+ (AgNZ) C Eo, we have S+ (AN =) € R(Eop), and then by
Lemma 1.4.11, Q(anz)(S) € R(Q(aonz)(Eo)). Now, Ao/(A¢NE) = (Ag+Z)/Z, via
T+ANE - 7+ E = Qz0Q4,nz)(7 + Ad), s0 Q=(S) € R(Q=(Eo)) C R(T/Z),
and thus by Lemma 1.4.11, S + = € R(T). .

We then have the following, whose proof is completely analogous to that of

Corollary 1.4.6.

1.4.13. Corollary. If a is a piecewise affine map into a locally compact Abelian

group I', then rnga € Ry(T). ]

The converse to this is also true—if X € R4(T'), then with X3 = X C T,
the identity mapping X; — X is a piecewise affine map. (The continuity of this
is assured, as X; has its discrete topology.) We will consider a converse to Corol-

lary 1.4.6 in Section 1.6.

The following result is of no immediate use, apart from demonstrating the

utility of Proposition 1.4.12.
1.4.14. Corollary. If A,B € R(T), then A+ B € R(T).

Proof. We have A x B € R(T' x I) and {(v,—7) : v € I'} is a closed subgroup
of ' x I Thus {(a +7,b—7) : a € A,b € B,y € I'} € R(T xT) and
(A+B)x{e} = {(a+7,b=7) :a € Abe B,y € T }N(T x {e}) € R(T x {e}).

The Range of a Homomorphism Between

Commutative Group Algebras

In this section, as promised, we will complete the characterization of the range
of a homomorphism between commutative group algebras. We firstly look at the
case where a : Y — I} is a piecewise affine map with just one piece, in the manner

of Lemma 1.4.1.
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1.5.1. Lemma. Suppose Y € Ro(l') and a : Y — I is proper with an affine
extension a; : Eo(Y) — Iy. Then for any f € k(a), f o a™ has an extension in

A(L).

Proof. Put E = Ey(Y), then by Lemma 1.4.4, a; : E — I is proper, so as in
Lemma 1.3.4, there is a compact subgroup A of E — E such that a; o Q' is an
affine homeomorphism E/A — a(FE). Define f : I, — C to be the unique function

that agrees with f on Y, is constant on cosets of A, and is zero off Y + A. That is,

Fy) f(y —A) when A € A is such that y — A € Y
’7:
0 ify¢Y +A.

To show f € A(T), we require sets Si,...,S, € R(I}) such that J] S; =Y + A
and f *Xgr-e- 1.f' 6 = A(I3), for then

s X$1u-USn = Z fiv Xse " Xr\(81U--US¢—1) € A(lz).
k=1

By Lemma 1.4.3, there is a finite set F C A such that Y + A = J,x(Y + A).
Then for each A € F, f - x,,, = f o7y € A(T), s the sets {Y + A}hrer € R(T2)
are as required, giving f € A(T;). Furthermore, the defined properties of f mean
that f € (ay). Hence by Lemma 1.3.4, f oa;' has an extension in A(I}), and since

-1

f oo is itself an extension of f o a™, we are done. ]

The final proof of the general case requires a result on ideals of commutative
group algebras, so that the individual extensions obtained by Lemma 1.5.1 can be

combined.

1.5.2. Lemma. If T and J are closed ideals of a Banach algebra 2 and T
contains {e,}nea, a bounded approximate right identity for Z, then T + J is a
closed ideal of .

Proof. Clearly T + J is an ideal of A. Let 7 : J/(ZNJ) — (T 4+ J)/T be the
natural isomorphism. Clearly 7 is continuous. Let y € J be such that "y +I| <3l
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so that there exists z € T with ly -~ 1‘" < 1. Then

[=2+ )| = inf |y +2] < inf |y - yea|

= mf(lly =z + |o — zen] + eal= - 4])

<140+ sup"en"
nea

and so 7~ is continuous. Hence (T + J)/T is complete, and it follows that Z + J

is a closed ideal of 2. =
1.5.3. Lemma. If A,B € R.(T') then Z(A) + Z(B) = Z(A N B).

Proof. By [28, Theorem 13], Z(A) has a bounded approximate identity. Hence,
by Lemma 1.5.2, we have that I(A) + Z(B) is a closed ideal of A(T'). Furthermore,
Z(Z(A)+ I(B)) = ANB € R.(T). By [15, Theorem 1], AN B is a set of synthesis,
so Z(A) + Z(B) = I(A n B). .

1.5.4. Corollary. Suppose A,B € R.(T'), f,g € L'(G) and f|,m5 = gl anB-
Then there exists h € L'(G) such that f|4 = h|s and §|s = h|s.

Proof. We have f — g € I(AN B) = I(A) + I(B), so there are f' € I(A) and
g € I(B)such that f —g = —f +¢. Thenh = f+ f' = g+ g € L'(G) has
fla = hla and §|p = hls. o

1.5.5. Theorem. If Y € R([3) and a : Y — I} is a proper piecewise affine map,

then for any f € x(a), f o a™ has an extension in A(L).

Proof. By Lemma 1.4.1, there exist disjoint Sj,...,S, € Ro(I3) such that
Ul Sk = Y and each als, is proper with an affine extension ax : Ep(Sy) — I.
For each1 < k < n, f - X5"E #(als,), so by Lemma 1.5.1, there exists g € A(T})
such that gi|.(s,) = fo (alspti= fo ™ a(si)-

By Corollary 1.4.6, each a(Sk) € R.(I1), and so we can apply Corollary 1.5.4

repeatedly to show that f o a™ has an extension in A(I}). ]
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We now have the main theorem of this section.

1.5.6. Theorem. Suppose G; and G, are locally compact Abelian groups and
v : L'(G,) — L'(G,) is an algebra homomorphism. Then with Y = T3 \ Z(rng v)

and a = V'|y, mgv = k(a).
Proof. Combine Lemma 1.2.4 with Theorem 1.5.5. ]

Once we have this theorem, the following generalization requires only a small

amount of extra effort.

1.5.7. Theorem. If v : L'(G,) — L'(G,) is an algebra homomorphism and J is
a closed ideal in L'(G,), then v(J) is a closed subalgebra of L'(G,).

Proof. LetZ = kerv = Z(a(Y)), where Y and a are as above. By Corollary 1.4.6,
a(Y) € R.(I1). Hence, by [28, Theorem 13|, Z has a bounded approximate identity.
Then, by Lemma 1.5.2, T+ 7 is a closed ideal of L'(G}). Since v is maps onto k(a),
a Banach space, we have by the Open Mapping Theorem that v(L'(G1) \ (T + J))
is open in k(a). Hence v(J) = &(a) \ v(L'(G1) \ (T + J)) is closed in &(a), and
an ideal of k(a), so that v(J) is a closed subalgebra of L'(G,). =

Given the rather definite characterization of the range of homomorphisms be-
tween commutative group algebras, it is natural to look for generalizations and
similar results for homomorphisms between other Banach algebras. Some of these
generalizations will be dealt with later, in Section 1.6 and Chapter 4—we comment
here on possible generalizations of Theorem 1.5.6 to a situation involving general

locally compact groups. (That is, those that are not necessarily Abelian.)

There are two possible generalization of Theorem 1.5.6 in this direction—the
first is to consider homomorphisms between the group algebras of locally compact
groups, and the second is to consider homomorphisms between the Fourier algebras
of locally compact groups. In the latter case, the actual algebras are commutative

semisimple Banach algebras, and so there is the possibility of using Theorem 1.2.1
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and attaining a result analogous to Theorem 1.5.6 in this case. One impediment to
this is the lack of a complete result characterizing homomorphisms A(G;) — A(G,)
similar to Theorem 1.3.3. Some partial results have been attained by B. Host in [22].
These require that Gy have an Abelian subgroup of finite index. Other difficulties
arise in trying to generalize Lemma 1.5.3. There has been some investigation of the
existence of bounded approximate identities in closed ideals of the Fourier algebra
of a locally compact group by B. Forrest in [14]. These seem to require that the

group, G in this case, be amenable.

The second possible generalization is that of homomorphisms between the group
algebras of locally compact groups. Here we no longer have commutative Banach
algebras, so Theorem 1.2.1 does not apply. One could, however, develop analogous
ideas involving the structure spaces of these algebras, and look to characterize the
range this way. A more modest goal, perhaps, would be to show that the range of
such a homomorphism is closed, or that if a homomorphism is dense-ranged, then it
is onto. Some detail of the possible homomorphisms would assist in this task, but

unfortunately there are only partial results in this direction. For example, see [25].

Note that by Proposition 1.1.2, we can characterize the range of group algebra

homomorphisms L'(G;) — L'(G;) in the case where G, is Abelian.

1.6. Piecewise Affine Sets

In this section, we will place all the results considered in the previous three
sections into a much more general, and possibly more natural, setting. We have,
for a coset E, definitions of A(E), B(E), R(E), and so on, derived from those for a
locally compact Abelian group. We consider a more abstract type of set X for which
we can define similar objects. Most of the proofs in this section can be deduced from
those for the group and measure algebras on a locally compact group, and so the

proofs herein will be indications as to how this can be done.

As a starting point, we have, by Corollary 1.4.13 and the subsequent discussion,

that a subset of a locally compact Abelian group T' is the range of a piecewise affine
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map if and only if it is in the discrete coset ring of I'. For proper piecewise affine
maps, we have by Corollary 1.4.6 that if X C T is the range of a proper piecewise

affine map, then X € R (T). The converse to this is not immediately forthcoming.

Note that, by the Structure Theorem for locally compact Abelian groups, any
locally compact Abelian group G is topologically isomorphic to R" x Gy, where
Go contains a compact open subgroup, and so Gy does not contain any subgroup
topologically isomorphic to R. Thus n is the maximum non-negative integer such
that G contains a subgroup topologically isomorphic to R™. We generalize this to

subsets of a locally compact Abelian group.

1.6.1. Definitions. Define a Euclidean coset E C T to be one that is affinely
homeomorphic to R”, for some N > 0. In such a case, N is the dimension of E.
A Euclidean subcoset of a set S C T is a subset E of S that is a Euclidean coset
in I'. The Euclidean dimension, dimg S, of a set S C T is the largest n > 0 such
that there is a Euclidean subcoset of S of dimension n. A set S C T is uniformly

Euclidean if each maximal Euclidean subcoset E has the same Euclidean dimension

as S.

Suppose Xi,. .., Xx € R(T'), each X has Euclidean dimension < n, and
X = Ul" Xx. Then for any Euclidean coset E C X, E = UT'(E N X}), and so one
of the sets £ N X} must have an interior point in E. However, EN X, € R.(E), and
since any proper subcoset of E has empty interior, it follows from (38, Theorem 1.7]
(as in the introduction to Section 1.4), that there is some Sy C E N X, with
Sk € R(E) = {2,E}. Hence E C X}, and so X has Euclidean dimension < n.

Hence if each X is uniformly Euclidean of dimension n, then X is also uniformly

Euclidean of dimension n.

1.6.2. Proposition. Suppose I is a locally compact Abelian group and X C I3.
Then X is the range of a proper piecewise affine map if and only if X € R.(T})

and X is uniformly Euclidean.




Piecewise Affine Sets 37

Proof. We first show that the range of a proper piecewise affine map is uniformly
Euclidean. It suffices, by Lemma 1.4.1 and the discussion above, to show that if I
is a locally compact Abelian group, S € Ro(I3), and a : Ex(S) — T is a proper
affine map, then a(S) is uniformly Euclidean, with dimg a(S) = dimg I;.

By the Structure Theorem for locally compact Abelian groups, [37, Theo-
rem 2.4.1], we can assume that [; = I, x R", where I} has a compact open
subgroup. Then S C Ro(I}) has S = &' x RY, for some §' € Ro(I}). Also, if
7 € S, then a™{a(y)} is a compact coset in I3, so that A = a{a(y)} —qyisa
compact subgroup of I;. Clearly A = A’ x {0} for some compact subgroup A’ of T.

Since QA(S) = Qa«(S") x R", and Q4/(S’) has no nontrivial Euclidean sub-
cosets, it follows that Q4(S) is uniformly Euclidean of dimension N. Moreover,
a o Qf : Qa(Eo) — a(Ep) is an affine homeomorphism, so that a(S) is also
uniformly Euclidean of dimension N.

Conversely, suppose X is uniformly Euclidean of dimension N. We have that
X = S U---US,, where each S; is contained within a closed coset Ej in I}
such that Sy € R(E)). Then for each k, Ik = Ex — E) has a closed subgroup I}
such that T, = I} x R" and I} has a compact (relatively) open subgroup =x. Let
¥i : Tf x RN — Ej be an affine homeomorphism and let S, € R(I}) be such that
¥(S; x RY) = Si. Now define I, Y and a as follows:

I'=R"x [] Ik x 2,
k=1

i = RV X 2y X -+« X Spy X S X Spgr X -+ - X Zn % {k} € R(I),
Ll
k=
a'nd 7, = (1'],. .. 3$N7€1,- . -,6k—117’€k+17' > . 7671’1‘:) € Y
= 0(71) a7 1/11:('7, 5 PR IN)-
Clearly a : Y — T is a piecewise affine map with a(Y) = X. Moreover, since each

piece aly, is essentially a quotient by the compact subgroup HJ# Zj, each aly, is

proper, and so « is proper. [
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Thus (R x {0}) U (Z x {1}) € R?is not the range of a proper continuous

piecewise affine map, despite being an element of R.(R?). Similar sets are easily

constructed in any locally compact Abelian group of nonzero Euclidean dimension.

1.6.3. Corollary. A closed ideal T C L'(G) is the kernel of a homomorphism into
a commutative group algebra if and only if Z(T) is a uniformly Euclidean element

of R(T).

Proof. If T is the kernel of v : L'(G) — L'(G’), then by Proposition 1.2.1,
Z(I) = a(Y), so that Z(T) is a uniformly Euclidean element of R (T'). Conversely,
if 7 is a closed ideal such that X = Z(Z) is a uniformly Euclidean element of
R(T), then by Proposition 1.6.2, there is a locally compact Abelian group I, a
set Y € R(T), and a proper piecewise affine map a : ¥ — T with range X.
Then with v : L'(G) — L'(G') the homomorphism determined by a, we have
Z(kerv) = oY) = X = Z(Z). Since X is a set of spectral synthesis, ker v = Z.

If we now examine the proof of Theorem 1.5.5, no use is made of the fact
that a(Y’), the set on which f o a” is defined, is uniformly Euclidean. Thus we
have a result slightly stronger than Theorem 1.5.5. This stronger result can be
stated as considering proper piecewise affine maps @ : Y — T where Y is a set
made up of pieces whose Euclidean dimension is not the same. The definition
we make has a little in common with that of a manifold, with some significant
differences. The intent is the same—we seek a definition of a topological space
with associated structures that give it certain properties similar to those of a locally
compact Abelian group, whilst discarding aspects of a locally compact Abelian group

that are irrelevant for our considerations.

1.6.4. Definitions. A piecewise affine set is a locally compact topological space
X with a finite atlas of associated charts 1 : Sy — X (1 < k < n) satisfying :
(i) each Sy is in the coset ring of a locally compact Abelian group I},

(note: I, I3, ... may be distinct)
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(ii) each 4, is a homeomorphism onto Xj, its range,
(g xR

(iv) if X; N Xj is nonempty then it is equal to some X;,

(v) if X; C X then ¢;" 0 9h; : S; — Ik is a proper piecewise affine injec-
tion. (Equivalently, a piecewise affine map that is a homeomorphism
onto its range.)

If X is a piecewise affine set with respect to two different atlases {}7 and 3348
we say that these atlases are compatible if there is an atlas with {¢;}7 U {¥3T as
a subset. We can now define the coset ring, Fourier algebra, and Fourier-Stieltjes
algebra of such a set X by

R(X) = {5 S X :4¢(5) € R(L) (1 < k < n)}

AX) = {f € Co(X) : f ok = fils,, for some fi € A(Tx) (1 < k < n)}
B(X) = {F € C(X) : Foyy = Fils,, for some Fx € B(I}) (1 < k < n)}.
Suppose 1 C {1,...,n} is such that X = |J; Xx. Then it is clear that R(X) =
{S € X : ¢{(S) € R(LW) (k € 1)}. Similarly, we only need consider k € I
when assessing whether a given function is an element of A(X) or B(X). For this
reason, compatible atlases give identical definitions of R(X), A(X) and B(X). We
define R4(X) and R.(X) analogously to the group case. We make A(X) into a
Banach algebra by defining "f" = E;‘"kask HA(m, and similarly for B(X). It
is readily checked that compatible atlases give equivalent norms. If X is another

piecewise affine set, (with charts 1,2'1- : S'j — X, etc,) and Y € R(X), a map

a : Y — X is called piecewise affine if each z/'j_l o a o VY is a piecewise affine

map d),:l(a'l(f(k)) — Ij. We will also speak of this as a morphism of piecewise
affine sets, and adopt the usual gamut of terms monomorphism, epimorphism, iso-
morphism, topological isomorphism, automorphism, ... Note that these all include
the continuity criterion that originally occurred in 1.3.1, where we defined piecewise

affine.

Note. When it is intended that the term “piecewise affine map” should refer to

the definition given above, this intention will be stated, if it is not clear from the
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context. Otherwise, we will mean a piecewise affine map between locally compact
Abelian groups. Thus, if we say that a set is the range of a piecewise affine map,
then we mean a piecewise affine map as in definition 1.3.1, rather than a map of the

type in the above definition.

1.6.5. Example. Suppose I, ..., T, are locally compact Abelian groups and for
each k, let X; € R(I}), and let X = i Xx. Then X is clearly a piecewise affine

set.

1.6.6. Example. Let T be a locally compact Abelian group and let X ¢ R.(T).
We have, by [38, Theorem 1.7], that X = |J} X, where each Xj is in the coset
ring of Ey, a closed coset in I. For each nonempty F C {1,...,n} such that
Nier Xk # @, put Xp = Nker Xk- With vp € Xp, TF = Nker Bx — 7F is a closed
subgroup of I' and X — ¢ € R(Ir). Let Sp = Xp — yp, and let Y5 : Sp — X
be the translation 4 + 4 + y£. Then (i)-(iv) above are clear. If Xp C Xpi, then
[r is a closed subgroup of I'rr and zl’;J o Yr : Sp — I'r has an affine extension
Ir — Tf given by ¥ — 5 + 9 — vpr, which is proper. Thus we have (v), so
that any X € R.(T) can be viewed as a piecewise affine set in a natural way. Due

to the comments within definition 1.6.4, we can usually ignore all the Xg except

Ko vt

1.6.7. Example. Let X = | X,, where §; = S, = R
S3 = {0,1} € R(Z), X, N X; = X5 = {z0,21}, and

the charts are given by 1,(0) = 3(0) = 0 and Zo
$i(1) = a(1) = ¢a(1) = ;. X,

b

1.6.8. Definitions. We say that a piecewise affine set X is disjoint if there is
a topological isomorphism from X onto a set of the type in Example 1.6.5. We
say that a piecewise affine set X can be embedded in a group (or just embedded) if
there is a topological isomorphism from X onto a set of the type in Example 1.6.6.

(Or equivalently, if there is a proper monomorphism from X into a locally compact
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Abelian group.) A disjoint piecewise affine set can be embedded, whereas the set in
Example 1.6.7 cannot be embedded. We will chiefly be interested in those piecewise

affine sets that can be embedded.

The following theorem contains a representative sample of some of the possible

results on piecewise affine sets.

1.6.9. Theorem. Suppose X and X are piecewise affine sets, W € R(X) and

a: W > X is piecewise affine. Then
(i) ®ax) = X, via ¢:(y) = v(z), and A(X) is semisimple and regular,
(i) A(X) is a closed ideal of B(X),
(iii) B(X) is the multiplier algebra of A(X),
(iv) the idempotents in B(X) are 1y ¥ € R(AJ
(v) any X € R.(X) is a set of synthesis for A(X),
(vi) a closed ideal I of A(X) has bounded approximate identity if and
only if Z(I) € R.(X),

(vii) a(W) € Ra(X), and if a is proper, then a(W) € R.(X),

(viii) f — foa defines an algebra homomorphism A(X) — B(X), which
has range in A(X) if and only if a is proper, in which case the range
is Kq(x)(a).

Further, if X can be embedded, and v : AN A(X) is an algebra homomor-
phism, then
(ix) Y = X\ Z(rng v) € R(X) and v*|y is piecewise affine.

Proof. Most of (i)...(vi), and the first part of (viii), can be deduced from the fact
that we have the natural algebra epimorphisms
px, : B(X) — B(Xi) = B(Sk) = Ipm,)(Ik \ Sk) € B(ILk),
fOI‘ WhiCh PXi (A(X)) Q A(){k) = A(Sk) = IA(Fk)(Fk \ Sk) Q A(Fk),

and that px, ®@--- @ px, : A(X) - @] A(Xk) is a monomorphism. The statement

(vii) follows directly from the definition of piecewise affine sets and maps, and
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Corollaries 1.4.6 and 1.4.13. Once we have the form of a(W) for proper «, the
proof that the range of the homomorphism f +— f o a is k(a) involves showing
that A()~()|a(w) = A(a(W)), which we can prove as in 1.5.6. To show (ix), note
that we have (without loss) X € R.(T), so A(X) = A(T)/Z(X). Thus we have

~

a homomorphism p : A(f) — A(X), from which we obtain homomorphisms

PX, OV O p5: A(f) — A(T%), which we can then tackle using Theorem 1.3.3. ]

A useful application of this is a description of L'(G)/Z, for certain ideals Z. If
7 = I(X) for some X € R.(T), then the inclusion mapping tx : X — T is a proper
piecewise affine injection, so that f — f o:x = f|x defines the homomorphism
px : A(T) — A(X) whose range is k4(x)(tx) = A(X). Thus px is an epimorphism
with kernel Z(X), so that L'(G)/Z(X) = A(X).

Using this, along with a construction similar to Proposition 1.6.2, and parts
of Theorem 1.6.9, it is possible to obtain some characterizations of those ideals
with hull in R(T). It is interesting to compare this with [28, Theorem 13], which

characterizes exactly the same ideals as is done here.

1.6.10. Proposition. If G is a locally compact Abelian group and T is a closed
ideal of L'(G), then the following are equivalent:
(i) Z(T) € R.(D),
(ii) there exist locally compact Abelian groups Iy,..., T, Y € R(UTH)
and a proper piecewise affine map a : Y — T with range Z(T),
(iii) T is the kernel of a homomorphism L'(G) — L'(Gy)®--- & L(G,),
(iv) L'(G)/T is isomorphic to a closed subalgebra of a finite direct sum
of commutative group algebras, and
(v) L'(G)/T is isomorphic to the Fourier algebra of an embeddable piece-

wise affine set.
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1.7. Subalgebras of Commutative Group Algebras

In this section we will examine closed subalgebras of commutative group al-
gebras, which we call group subalgebras, and for certain classes of these, develop
necessary and sufficient conditions for property (G). We assume throughout that

G is a locally compact Abelian group with dual T.

The following is a direct consequence of Proposition 1.1.2 and Theorem 1.5.6.

1.7.1. Proposition. A closed subalgebra 2 of L'(G) has property (G) if and
only if Y =T\ Z() € R(T) and there is a locally compact Abelian group I" and

a proper piecewise affine map a : Y — I' with 2 = k(). 5

We now consider specific classes of group subalgebras and develop necessary
and sufficient conditions for amenability and property (G). The simplest such class

is that of the closed ideals of commutative group algebras.

1.7.2. Theorem. Let I be a closed ideal of L'(G), and put E = Z(I). Then T
is amenable if and only if E € R(T), whereas T has property (G) if and only if
E € R(T'). In either case, T = I(E).

Proof. The first part of this is [29, Theorem 1]. This relies on the fact that a
closed ideal of an amenable Banach algebra is amenable if and only if it has bounded
approximate identity. For the second, we have by Proposition 1.7.1 that if Z is an
ideal with property (G), then Y =T \ E € R(I'), and so E € R(T'). Conversely,
if E = Z(Z) € R(T'), then E is clopen, and consequently of synthesis, so that
T = I(E). Moreover, if we define a : ¥ — T to be the inclusion mapping, then a
is a proper piecewise affine map with x(a) = Z(E), so by the above discussion, T

has property (G). L]

Remark. In the above proof, the epimorphism v : L'(G) — I determined by a

has u/(?) = Xp\g f. Then by (10, Theorem 1], there is an idempotent measure

p € M(G) with g = Xry\g» SO that v is given by f — f % u. So we can see that




44 Chapter 1. Property (G) in Commutative Banach Algebras

v is a multiplicative projection. The problem of finding a projection onto an ideal
of a group algebra is quite a different problem. Some results on this problem are

contained in Appendix B.

We now turn to another construction of closed subalgebras of L'(G) that are
amenable and yet lack property (G). Suppose 2 is a commutative Banach algebra

and H is a finite group of automorphisms of 2. Put
Ay = {a € A : h(a) = q, (h € H)}

then 2y is a closed subalgebra of 2. (Note that here, we write H as a multiplicative
group, as it is not necessarily Abelian.) We then have the following result, whose

proof in this generality was kindly suggested by Professor B.E. Johnson.

1.7.3. Proposition. If 2 is a commutative amenable Banach algebra and H is a

finite group of automorphisms of 2, then Ay is an amenable Banach algebra.

Proof. Let {d.}nea € A ® A be an approximate diagonal for 2, and let H have

identity ¢ and cardinality N. Put K = maxheH"h".

The group H x H can be made into a group of automorphisms on A ® A via
(h1, h2)(a1 ® az) = hy(a1) ® hz(az) and Ay @ Ay = (ﬂ@ﬁ)(yxy). For eachn € A,
put d, = § ¥, cp(h, h)(dn). Then {d.},ca is an approximate diagonal for A with
(h,h)(d;,) = d.,, for each h € H; let M = sup,ea |d;,|. Now put

& =ec@c—[[(e®c— (ho)(d),

heH

where this product is in the algebra A ® 2, and the term e ® e plays a purely formal
role as a multiplicative identity. It is clear that {d”},ca is a bounded net in A & 2.

Moreover, if (hy, h;) € H x H, then

(h1,h2)(dy) = e ® e — [ (e ® e — (hih, hy)(d}))
heH

=e®e— [[(e®e— (hihh7},0)(d))) = d",
heH
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so that d’ € Ay ® Ay. Also, if a € Ay then

|a - ax(d)] = |a [T 7(e ® e - (b, ()|

heH

<a—an(d@)] ] le®e- (ho)(d)]

he H\{.}
< la - ar(d)|(1 + KM)"™

— 0,

so that {7(d})}.ca is an approximate right identity for 5. Finally, we have

di= > (=D)F ]k, O(dh),

@#SCH heS

so if we let S +— hg € S be a choice function, then for each a € Ay,

ldr-a—a-di] < Y |ths,0d, -a—a-(hs,0d,| T [ 0ldn]

@#SCH heS\{hs}

Y. lths, 0lldn - a = h5'(a) - & (K M)

@#SCH
<@ - DK|d,-a—a-d,|(KM)"

— 0.

Hence {d] }.ca is an approximate diagonal for 2y, and so 2y is amenable.

So we see that if G is a locally compact Abelian group and H is a finite group of
automorphisms of A = L'(G), then 2y is amenable. We denote this algebra L}, (G).
To determine when L};(G) has property (G), note that, by [11, Theorem 1], the
automorphisms of L'(G) are characterized by the piecewise affine homeomorphisms
of I'. Hence we can consider H as a finite group of piecewise affine homeomorphisms

I' > T'. Then
Ly(G)={f e L'G): foh=f (he H)}
={f e L'(G): f is constant on each orbit H(v)}.

So, applying Proposition 1.7.1, we see that L};(G) has property (G) if and only if

there is a proper piecewise affine map a from Y = I' \ Z(Ly(G)) into some other
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locally compact Abelian group such that Ly(G) = &(a) = {f el (G): f(F\)’) =
0 and f is constant on each a{a(7)}}. So it would seem that the partition of T
into orbits H(y) is identical to the partition of Y into sets on which a is constant.

The following lemma delivers precisely this result.

1.7.4. Lemma. Suppose v : L'(G') — L'(G) is a homomorphism between
commutative group algebras, Y =T \ Z(rngv) and a = v*|y, and suppose H is
a finite group of piecewise affine homeomorphisms of T. If tngv = L}(G), then

Y =T and for 71,72 €T, a(nm) = a(y2) < H(m) = H(m).

Proof. For each v € T, H(y) is finite, and since L'(G)~ separates points of
T, there exists f € L'(G) with f(H(y)) = {1}. Put f = iS4 f o h; then
f € (Ly(G))” and f(7) = 1. Hence y € T\ Z(LY4(G)) = Y, s0 Y = T. :

Now suppose 71,7, € T are such that H(y,) = H(y,). For each f € L(G),
v(f) € Ly(G). Hence v(f)(m) = v(f)(m), o that f(a(m)) = f(a(r)), and
since A(I") separates points, a(7,) = a(72).

On the other hand, if H(y) # H(7,), then H(v,) and H(;) are finite disjoint
sets, so there exists f € L'(G) with f(H(y)) = {0} and f(H(7,)) = {1}. Thus
f=mnEafohe (Ly(G) = (x(e)) and f(m) # f(1), s0 a(n) # a(1). =

We now use the above to show that if H is a finite group of automorphisms of T,
then L} (G) rarely has property (G). This is a natural situation to consider, for then
we can consider H as a group of automorphisms on G, being the group of adjoints
of elements of H. (This reverses the multiplication on H, which is immaterial in
the current situation.) Then L} (G) = {f €LY G): foh = f(h € H) }, which
is L'(G"), a convolution algebra on the orbit hypergroup G¥ = {H(9): g€ G }
See [39] for more information on the amenability of hypergroups and hypergroup

algebras.

In the situation where k(a) = L};(G), we have seen that we have Y = I'. The
following lemmas allow us to obtain further special properties of such a piecewise

affine map.
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1.7.5. Lemma. Suppose S € Ro(T') is such that Ey(S) is a subgroup of finite

index in T, and H is a finite group of automorphisms of T. Put S = Nier (S),

then S € Ro(T) and Eo(S) = Nier R(Eo(S)) is a subgroup of finite index in T.

Proof. Suppose S = Eo \ (U7 Ex), as in the definition of Ro(T), and put
Eo = hen h(Eo). Bach of {h(Eo) : h € H} is a subgroup of finite index in T,
so Eq is a subgroup of finite index in T. Also, § = E, \ (Uner UT (R(Ex) N E'o)),
with each h(Ex) N Eo being empty or of infinite index in £o. Hence § € Ro(T) and
Eo(S) = E,. =

In the following, we assume the notation of Lemma 1.7.4, and apply Lem-

ma 1.7.5 and Corollary 1.4.9.

1.7.6. Corollary. If mgv = Ly(G), then there exists S € Ro(T) such that
Eo(S) is a subgroup of finite index in T, a|s has a proper continuous affine extension

Eo(S) — I, and both S and Ey(S) are H-invariant. .

The following theorem characterizes property (G) in the algebras L} (G) that
we have been considering. Part of the proof is based on some of the ideas in
Section 1.6, but only as far as considering piecewise affine sets that are disjoint

unions of locally compact Abelian groups.

1.7.7. Theorem. Suppose H is a finite group of automorphisms of a locally
compact Abelian group T'. Then the following are equivalent :

(i) Lk(G) has property (G),

(ii) the subgroup A = {y € T : H(v) = {7}} is of finite index in T, and

(iii) Ly(G) is isomorphic to a finite direct sum of group algebras.

Proof. Supposing (i), then by Proposition 1.7.1 and Lemma 1.7.4, there is a locally
compact Abelian group G’ and a proper piecewise affine map a : I' — I" such that
the level sets of a are precisely the orbits of the action of H on I'. By Corollary 1.7.6,
there exists S € Ro(I') such that Eo(S) is a subgroup of finite index in T, a|s has a
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proper continuous affine extension aq : Eo(S) — I", and for each h € H, h(S) = S
and h(Eo(S)) = Eo(S).

Now, for each h € H and each v € S, ao(h('y)) = a(h(‘y)) = a(y) = ao(y), so
that Ao = {7y € Eo(S) : ag 0 h(7) = ao(7), (h € H)} is a subgroup of Eg(S) with
S C Ao. Since Eo(S) is the coset generated by S, we have that Ao = Ey(S), and
0 ag 0 h = ag, (h € H). Put = = {y € Eg(S) : ao(y) = ao(e)} = ag'{ao(e)}, a
subgroup of Eo(S). For each v € S, H(y) C S, so

7 € Hy) < a7) = a(v)

= a(y) = ao(y) and +' € S,

so H(7) = (y+Z) N S. Thus {y € Eo(S) : H(y) C 7 + =}, a subgroup of Eq(S),
contains S. It follows that H(y) C v + = for all v € Ey(S). For each h € H,
let h : Eo(S) — = be the homomorphism defined by h(v) = h(v) — 7, so that
AN Eo(S) = Nien h7{e}. It remains to be proven that = is finite, for then each

h7{e} is of finite index in Ey(S), which is in turn of finite index in T.

By Lemma 1.4.2, and the fact that E,(S) is a subgroup of T, there exists
M-+, IN € Eo(S) such that Ey(S) = Uiv Y + S, giving

E=ENES)= |J %+ (E-mwnS) = U %+ H(—m),

1<k<N 1<k<N

which is evidently finite.

Now assume (ii). For each coset v + A of A, and each h € H, h(y + A) is the
coset h(y) + A, so that H acts on I'/A. Let H(y + A),..., H(yn + A) be the orbits
of this action, and for each 1 < k < N, let hy,..., hyn, € H be such that the

cosets of A that make up H(v, + A) are {hej(me +A):1<j < ng}.

Foreachl < k < N, Hy = {h € H : h(w) € 7+ A} is a subgroup of H, and
A = {h('yk) — 1% :h € Hk} is a subgroup of A. Furthermore, Hy acts on % + A
by A(vk + A) = (% + A) + (h(w) — k), that is, by translations by elements of Ag.
For 1 < j < ny, define ay; : hyj(k) + A — A/Ax by awj(hej(re) + A) = A + As.
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This is continuous and affine, and since a,:;(/\ + Ak) = hij(%) + X + A is finite,

ay; 1s also proper.

Each coset of A in T is of the form hg;(yx) + A, for some unique k and j,
so we can define a proper piecewise affine map a : ' = A/A; U --- U A/Ax by
“piecing together” all the ay;. For each v € T, say v = hxj(7x) + A, we have
H(v) = H(hij(3 + A)) = H(ye + A). Also ot (A + Ax) = hij(1 + A + Ax) =
hi; (Hk(7 + A)). Hence

oo} = U a0 +a) = | hu(Heln+2) = How + ) = H(y),
1<5<n 1<)<n,

and as this holds for each v € T, k(a) = Ly(G). Now, by Theorem 1.6.9, a

determines a homomorphism v : A(A/A;) @ --- & A(A/An) — A(T) with range

k(a). Also, kerv = Z(rng(a)) and since « is surjective, we have that v is a

monomorphism. Hence Ay(T') = k(a) = A(A/A) @ --- & A(A/AN).

The last implication (iii)) = (i) follows from Proposition 0.2.5.

So we see that the amenable algebras of the form L}, (G) will usually fail to have
property (G). For instance, if I" is connected, then for L}(G) to have property (G),
we must have A =T, and so H = {:} and L}(G) = L'(G).

If G is a locally compact Abelian group, we always have the automorphism 7 on
G given by z — —z. (Although occasionally we have n = ¢, as we will see.) Then
H = {4, 1} is a finite group of automorphisms of G and Ly(G) = L,,,(G), the

subalgebra of symmetric (or even) functions in L'(G). We now apply the preceding

theorem to this case.

1.7.8. Theorem. If G is a locally compact Abelian group, the following are
equivalent :
(i') Liym(G) has property (G),

(ii') G =Y,,Z; x [[,Z, x F, for some cardinals a and b and some
finite group F, and
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(iii') L.,.(G) is isomorphic to a group algebra.

sym

Proof. Suppose (i'), then by Theorem 1.7.7, A = {y € T : H(y) = {7}} is
of finite index in I, say |[I'/A| = N. Then for each y € I, N-v € A and so
2N -y = e. Hence I is of bounded order. By [20, Theorem A.25], there is an
algebraic isomorphism ¢ : Ty — Y. Zy,, where I is an index set and {n; : i € I}
is a bounded set of integers greater than 2. But {7 S e} = A is of finite
index, so F = ™ (En.)Z Zn.) is a finite subgroup of I with (I'/F), = En,:? Z,.
Let Ao be a compact open subgroup of I', which we can assume to contain
F. If we now apply the argument of the above paragraph to Ao, we obtain that
A =2 F x l_[a Z,, for some cardinal a. By continuing with an argument similar to
that used in [20, 25.29], or by a straightforward application of Zorn’s Lemma, we
can obtain a complement to Ao, which will be isomorphic to Y4 Z for some cardinal

b, giving G = F x Y Z, x [], Z2.

For the implication (ii') = (iii’), we show that for G = 3, Z; x [I,Z2 x F,
L;,.(G) is isomorphic to a group algebra. Let H = Yoz x [[, Z, so that G =
HxF and H® = {e}. With ¥ : LY(G) — L'(H)®('(F) the natural isomorphism,
it is easily verified that lII(L:ym(G)) =LY (H)® C3ym(F). Now, ly(F) is a finite-
dimensional commutative semisimple algebra over C, so ¢!

lym(F) = Cm = el(zm)’
where m = dim(£},,,(F)). Thus L\, (G) = L'(H) & £'(Z,) = L'(H x Z.,).

sym sym

The final implication (iii) = (i) is trivial. [

In light of the conclusion (iii’) in Theorem 1.7.8, it is natural to ask whether
we can reach the same conclusion for the algebras considered in Theorem 1.7.7. We
will give an example of an Abelian group G with a finite group of automorphisms

H such that £};(G) has property (G), but is not isomorphic to a group algebra.

1.7.9. Example. Let U and V be as constructed in (26, p.616-7]. That is, U is a
countably infinite torsion-free Abelian group and V is a non-isomorphic subgroup

that is of index 2 in U. Let T = U, a connected compact Abelian group. Then
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= = Anny(V) is a two-element group, say = = {e, £}, and T/= = V is also compact

and connected. Put G = U X Z,, so that I' = T x Z,, and define n € Aut(l)
by 7(v,0) = (v,0) and n(v,1) = (v + &,1). Then n® = ¢, so H = {t,n} is a
finite group of automorphisms of T, and {y € T : H(y) = 173} = T % {03,

which is of finite index in T, so by Theorem 1.7.7, £} (G) has property (G). Thus
€y(G) is isomorphic to a finite direct sum of group algebras. In fact, if we apply
the construction in the proof of Theorem 1.7.7, we obtain £}(G) = ¢1(U) @ &),

which has carrier space T W T/=.

Suppose £'(U) @ £'(V) is isomorphic to a group algebra L'(G'), so that there
exists a piecewise affine homeomorphism a : T U T/= — TI’. Thus I has two
connected components, which are necessarily affinely homeomorphic. It follows
that T and Y/Z are topologically isomorphic, and so U and V are isomorphic.

(Contradiction.)

Many thanks to Dr Laci Kovacs and his group U for so perfectly meeting the

specifications desired.







Chapter 2. Property (G) in Unital
Banach Algebras

In this chapter we examine some amenable Banach algebras which we show to
lack property (G) by methods entirely different to those in Chapter 1. For the results
presented herein, I am indebted to the suggestion concerning the Cuntz algebras
and their relevant properties by U. Haagerup, and its communication through P.C.

Curtis Jr. and G.A. Willis.

2.1. Extensions of Homomorphisms

Suppose v is a dense-ranged homomorphism from a group algebra L'(G) into
a unital Banach algebra 2. Then A7 the set of invertible elements of 2, is open
in 2, so that there is some f € L'(G) with v(f) invertible. We start with a result

dealing with a situation more general that this.

2.1.1. Lemma. Suppose 2 and B are unital Banach algebras and T is a closed left
ideal of 2 with a left approximate identity {e,}nea. If v : I — B is a continuous
homomorphism with rngv N B~ # @, then there is a unique homomorphism

7 : A — B extending v. Moreover, i(e) = e = limpea v(en), ¥(Z) = (), and if

{€n}nea is bounded in norm by M > 0, then ||17]| < M|v|.

Proof. Suppose a € I is such that v(a) € 8. Then any homomorphism
7 : A — B extending v must satisfy #(r) = V(:ta)[u(a)] A (z € A). Define v to
be exactly this. Then # is a continuous linear extension of v with v(e) =e.

For each n € A, and each z € 2,

v(zen) — (z) = v(z(ena — a)) [v(a)] SR

so 7(z) = limyea v(zen). It is now clear that A C v(I), e = v(e) =

lim,ea v(e,), and that if each ||en|| < M, then ||17l| < M"u" It remains to be shown
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that 7 is multiplicative. If z,y € A, then ya € I, so v(rya) = limyea v(Tenya).
However, v(zya) = v(zy)r(a) and limyea v(Tenya) = [limnea v(ze,)|v(ya) =

7(z)o(y)v(a), and since v(a) € A, we have that v(zy) = (x)i(y), as desired. =

We now apply the above to the situation where L'(G) is a closed ideal, with

bounded approximate identity, of M(G).

2.1.2. Proposition. Suppose 2 is a Banach algebra with unit e, G is a lo-
cally compact group, and v : L'(G) — 9 is a continuous homomorphism such

that tngv N A # @. Then v has a unique extension to a homomorphism

7 : M(G) — . Further, |7 = |v| and v(LV(G)) = #(£(G)) = #(M(G)).

Proof. Let A be the set of compact neighbourhoods of e € G, ordered by 2O. For
each U € A, take ey € Cgh(G) with support within U and |ey| = 1. Then {ey}vea
is a bounded approximate identity for L'(G), a closed ideal of M(G). Hence, by
Lemma 2.1.1, v has a unique extension to a homomorphism 7 : M(G) — A, with
e = v(6) = limyea v(ev), ||1/|| = “u", and v(LY(G)) = v(M(G)).

It is clear that #(¢'(G)) C #(M(G)), so it remains to prove the inclusion
v(L'(G)) € 17(T(G')_)— For this it suffices to prove that v(Cgy(G)) C W

This can be achieved using a portion of the proof of existence and uniqueness
of Haar measure, as given in [20, 15.5-6]. (cf. [41, Lemma 2.1].) It follows from [20,
15.6 111, and the subsequent definition of the Haar integral, that for f € C&(G)
and £ > 0, there exists U € A such that if g € Cfy(G) is zero off U with ||g|| =Sy
then there exists b € €'(G) with |h| < |f] and |f — h xg| < &. Take V € A
with V C U, and |v(ev) — €| < e. Then ev € Cdy(G) is zero off U, so we can take
h € £'(G) with ||f — h % ev" < €. Then

[v(£) = #(B)] < [u(f = b x e)] + [7(h) (vev) =€)
< [llf = kxev] + [7llR]]v(ev) = €]
< vle + [l 7]=.

Hence v(f) € 7(£(Q)).
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2.1.3. Corollary. A commutative unital Banach algebra 2 has property (G) if
and only if there is a discrete Abelian group G and a continuous dense-ranged

homomorphism ¢'(G) — 2.

Proof. Suppose 2 is a commutative unital Banach algebra 2 with property (G),
then by Proposition 1.1.2, there is a locally compact Abelian group G and a con-
tinuous dense-ranged homomorphism v : L'(G) — 2. If we then apply Prop-
osition 2.1.2, the homomorphism # : M(G) — 2 has Vo) : 0(G) - A a

dense-ranged homomorphism. The converse is clear. L]

It looks as though we can use Proposition 2.1.2 in a similar way to show that
when assessing a unital Banach algebra 2 for property (G), we can restrict our
attention to discrete groups. This however, is not the case—it could occur that
there is a dense-ranged homomorphism L'(G) — 2, where G is amenable, but G,
is not, so that the resulting dense-ranged homomorphism *(G) — 2 is not from an

amenable Banach algebra.

2.2. A Necessary Condition for Property (G)
in Unital Banach Algebras

In the following, Z(2) is the centre of 2, that is,

ZA)={a€A:ab=ba,(be 2A)}.

2.2.1. Theorem. Suppose 2 is a unital Banach algebra with property (G). Then

span{ab — ba : a,b € A} N Z(A) = {0}.

Proof. Let G be an amenable locally compact group and v : L'(G) — 2 be a

dense-ranged homomorphism. Since A is open, rng vN2A™ # @, and we can apply

Lemma 2.1.2 to obtain an extension v : M(G) — 2 with "17" = "u", R= D(é"(G))
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and 7(é.) = e. Then
span{ab — ba : a,b € A} = span{ai(f) — #(f)a : a € A, f € €(G)}
— spﬁ{aﬂ(&) —v(b)a:a €Uz € G}
= 5pan{7(6;-)ai(8;) —a:a € A,z € G}.

Thus it suffices to show that for each 2 € Z(2), there is an element of 2A* that

annihilates each 7(6,-1)ai(8,) — a, but not z.

Take z € Z(2). Let ) € A be such that (z) # 0 and |¢| < 1. For each
a € 2, define the function ¥, on G by ¥,(z) = ¥ (#(6,-)av(é;)), (z € G). Then
sup,eq [Ya(z)| < [v]’|a], so $a € €°(G). Define ¥ : % — ¢2(G) by ¥(a) = o,
Then V¥ is linear with ”lIl" = "u"2 If a € rng v, say a = v(f), then for each z € G,

Ya(T) = Yo v(bsa * f x6,), s0 ¥, € Cy(G). Hence \I/(rng z/) C Ciy(G), a closed
subalgebra of £*°(G), and since ¥ is continuous, ¥(A) C Cy(G).

Now, if a € 2 and 7,y € G, then
y(Y(@)(2) = Yalyz) = ¥ (7(6,4)7(6,4)ai(8,)7(8:) ) = W(5(6,-)ai(8,)) ().
So that if M is a left-invariant mean on Cy(G), then
Mo ¥(a) = M(,%(a)) = M o U(i(6,4)ai(é,)).
Hence M o ¥ € A" annihilates each (6,4 )ai(6,) — a. But
Ye(z) = P(9(6:1)20(8;)) = $(9(82-1)(6:)z) = 9(2),

so that ¥(z) is the constant function ¢(z). Hence M o ¥(z) = ¥(z) # 0.

2.3. The Cuntz Algebras

Suppose H is a separable infinite-dimensional Hilbert space, n is an inte-
ger greater than or equal to 2, and H,,..., H, are orthogonal closed infinite-

dimensional subspaces of H such that H; + - - - + H,=H. Foreachl < k < n,
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let Sy be a linear isometry from H onto Hy. Then S;,...,S, € B(H) and
I =515 =---=55 = 55 +---+5.5,. Let O, be the C*-algebra gener-
ated by Sy, ..., Sn, which we call the Cuntz algebra on n generators. This algebra
was introduced by J. Cuntz in [12], where it is shown not to depend on the actual
isometries Sy, ..., S, chosen, but only on n. In [35], it is shown that the Cuntz

algebras are amenable. However,
(5151 — $157) + «++ + (S350 = 5aS;) = (n = )] € Z(0,),

so we see that O, cannot have property (G).

This seems related to other properties of the Cuntz algebras related to amen-
ability. In particular, the Cuntz algebras are amenable, but not strongly amenable.
(Strong amenability is a property of C*-algebras defined in [23]. The Cuntz algebras
were shown to not be strongly amenable in [35].) This absence of strong amenability
in the Cuntz algebras can be partially related to the absence of property (G), as
follows.

Suppose 2 is a C”-subalgebra of B(H) with property (G), so that there is
an amenable group G and a continuous homomorphism v : L'(G) — 2 with

mgv N A7 # @. By Proposition 2.1.2, we have a homomorphism ¢'(G) — A,

which gives a continuous representation = : G — B(H) with n(z) < ﬂu", for

each ¢ € G. (cf. [33, p.77].) Then by [33, Corollary 17.6], 7 is equivalent to
a unitary representation, that is, there is an isomorphism ¥ : H — H such
that 7' : z ~— W7'n(z)¥ is a continuous representation of G with each 7'(z)
unitary. By [23, Proposition 7.8], A’ = span n'(G) is a strongly amenable Banach
algebra. Moreover, ¥A'U™ = span(¥r'(G)¥™") = spanx(G) = A. Now, if strong
amenability was preserved by this transformation 2’ +— WA'U™, then we could
conclude that 2 is strongly amenable. This would provide a more direct proof that
the Cuntz algebras do not have property (G). Unfortunately, it is not clear whether
strong amenability in C*-algebras is preserved by this transformation, so this avenue

is not open to us.







Chapter 3. Other Constructions
Preserving Amenability

We have seen that the use of dense ranged homomorphisms is not sufficient
to bridge the gap between amenability in group algebras and amenability in other
Banach algebras. This chapter deals with the possibility that other constructions
which preserve amenability could be used in a characterization of Banach algebra
amenability. We start with one of the more basic constructions, which is immediately
accessible, using methods developed in Chapters 1 and 2. We then undertake an
examination of certain aspects of Banach algebra amenability, in order to execute a

more intricate construction.

3.1. Amenable Quotients by Amenable Ideals

We have, by [23, Proposition 5.1], that if a Banach algebra 2 has a closed ideal
T such that A/Z and T are both amenable, then 2 is amenable. Given the charter

of this chapter, it is natural to consider the following property of Banach algebras.

3.1.1. Definition. We say a Banach algebra 2 has property (G’) if there are closed
subalgebras {0} = Ao C A; C --- C A, = A such that for each 1 < k < n, Ay,
is a closed ideal of Ay and 2;/2A;_, has property (G).

Remark. Each algebra 2, has a bounded approximate identity and hence factors.
(That is, each a € Ay is a product a = bc, for some b,¢ € A;.) Thus, for any
a € 2y, there are ay, ..., a,-1 € A with @ = ax...a,—;. Then each a; € ¥;, and
so if b € A, then a,_1b € A,_1, an_2a,_1b € A, _,, and so on, eventually giving
ab € ;. Hence A is a right ideal of A. We can similarly show that 2 is a left

ideal of 2. Hence each 2 is a closed ideal of 2.

This following example shows that property (G’) is strictly more general that

property (G).
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3.1.2. Example. Let G be a nondiscrete locally compact Abelian group, and
put A = L'(G)", the unitization of L'(G). Then L'(G) is an ideal of A with
A/T = C = {'({e}), so that A has property (G'). Note that 2 can be regarded
as the closed subalgebra L'(G) + C§. of M(G). Supposing 2 has property (G),
then by Corollary 2.1.3, there is a discrete Abelian group G' and a homomorphism
v : £1(G') - M(G) with Thgv = L'(G) + C5.. Clearly, ®4 can be identified
with ' U {¢}, the one-point compactification of @116 = T. If we now apply
each of Theorems 1.2.1 and 1.3.3 to the homomorphism v, we obtain a proper
continuous injection a : ®q — I such that a|r is a non-proper piecewise affine
map. Thus a(®a) is closed, and by continuity, a(¢.) € a(T). By Lemma 1.4.1,
there exists S € Ro(T') such that a(¢.) € a(S) and a|s has an affine extension
o 1 Eo(S) — I'. Put E = Ey(S), then a(S) is not closed in I, but it is clopen
in o/(E), so that o/(E), a coset, is not closed in I'". Thus «(E) \ o'(E) is dense in
o(E), and since a(S) is clopen in «(E), a(S) \ a(S) is dense in a(S). However,
a(§) \ a(S) = {¢=}, which is absurd.

Examples with more complicated quotient algebras are easily constructed. For
instance, take any ¢ € @1 (g), and put A = L'(R) x L'(R) with ”(f,g)" = "f”+ "g”
and (f1,91)(f2,92) = (i * fa + @(91) 2 + ©(92) f1, 91 * g2). Then T = L'(R) x {0}
is a closed ideal of A with T = /T =~ L'(R). To show that A lacks property (G),
we have an epimorphism I x ¢ : L'(R) x L'(R) - LY(R) x C = L'(R)*, and we
have seen above that L'(R)* lacks property (G).

3.1.3. Proposition. Suppose n > 0 and H is a finite group of automorphisms of

R". Then L};(R") is amenable but does not have property (G').

Proof. By Proposition 1.7.3, Ly(R™) is amenable, whereas by Proposition 1.1.2

and Corollary 1.3.6, there is no nonzero homomorphism from a group algebra into

Ly (R™), so we cannot even get 2, as in the definition of property (G’). (]

3.1.4. Proposition. If n > 2, then the Cuntz algebra O, does not have prop-
erty (G').
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Proof. By [12, Theorem 1.13], O, is simple, and so the only chain of ideals
{0} = % Cc A C --- C An = O, is the trivial one with m = 1. Then
since 2A; /Ao = O, lacks property (G), O, cannot possibly have property (G’). =

3.2. Quantifying Amenability

We know that the direct sum of a pair of amenable Banach algebras is amen-
able, and that the direct sum of a pair of Banach algebras with property (G) has
property (G). The case for infinite direct sums is not so straightforward—we will
encounter infinite direct sums of amenable Banach algebras that are not amenable.
The purpose of this section is to examine certain aspects of amenability so that we
can determine whether infinite direct sums, and similar constructions, retain the

amenability present in the component parts.

3.2.1. Definition. A Banach algebra A is M-amenable for M > 0 if there is an

approximate diagonal for 2 bounded by M.

3.2.2. Lemma. Suppose 2 is a Banach algebra and {d,}nea is a bounded net in
AR A Then Ay = {a € A: r(d)a » aandd, -a—a-d, — 0} is a closed
subalgebra of 2.

Proof. Suppose a,b € o, then 7(d,)ab — ab = (7(dn)a — a)b — 0 and
d, -ab—ab-d, = (dn-a—a-dn)-b+a-(dn-b—b-dn) — 0, so that
A, is a subalgebra of A. Let M be a bound for {d,}nea. For a € 2 and € > 0,
take ap € Ay with "a — aol| < €. Since ap € 2, there exists ng € A with

n>ny — I|7r(d,.,)ao - aoﬂ < € and "d,, -ag— agp - dn" < €. Then for n > ng,

[r(dula o < Ir@)lla = au] + I(do)ao = ao] + oo =]
< (M + 2)e

and |dn-a—a-dy| < |daa - ao] + Jdn - a0 — a0 - du] + |a - aof|dn]

< (2M + 1)e.

Hence a € 2, so that g is closed.
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3.2.3. Lemma. If {d.}.eca is an approximate diagonal for a Banach algebra 2
and v : A — B is a dense-ranged homomorphism, then {(v ® 1/)((1,.)}nGA is an

approximate diagonal for ‘B.

Proof. For each n € A, put d, = (v ® v)(dn), then {d,}.ca is a bounded
net in B ® B. By Lemma 3.2.2, it is sufficient to show that =(d,)b — b and
d,-b—0b-d, — 0for b=v(a) € rngv. Clearly, for each u,v,w € 2, we have
(v @ v)(u ®@v)) = v(r(u®v)), (v ® v)(u @ v) - v(w) = (v ® v)(u @ vw), and
v(w) - (v @ v)(u®v) = (v ® v)(wu @ v). Hence 7(d},)b — b = v(r(d,)a —a) — 0
andd, -b—b-d, =vQ®uv(d,-a—a-d,) — 0. o

3.2.4. Lemma. Suppose A and B are Banach algebras and {c,}nea, € A ® 2,
{dn}mea, C BOB are nets. Then {c,+dm}(nm)ea,xa, is an approximate diagonal
for A @ B if and only if {cp}nea, and {dm}mea, are approximate diagonals for 2

and ‘B, respectively.

Proof. Suppose {¢, + din}(nm)ea, xa, is an approximate diagonal for A @ B. Let
P : A®B — 2 be the natural projection. Then for each n, m, P@ P Pd =",
so by Lemma 3.2.3, {¢}(nm)ea,xa, is an approximate diagonal for 2, from which
it follows that {cn}nea, is an approximate diagonal for 2. Similarly, {d }mea, is

an approximate diagonal for B.

Conversely, suppose {cn}nea, and {dmn}mea, are approximate diagonals for A
and ‘B respectively. Clearly {c, + dm}a,xa, is a bounded net in (A B)® (A S B).
Suppose a € 9, then since each 7(d,) € B, 7(dn)a = 0, and 7(c, + dp)a =

m(cn)a — a. Also, for eachm € Ay, d,-a=a-d, =0, so
(cantdn)-a—a-(chnt+dn)=ch-a—a-c, = 0.
The corresponding observations for b € B complete the proof. [

We now present some examples and results concerning infinite direct sums of

amenable group algebras. As these are based on finite-dimensional complex algebras,
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it is pertinent to recall Proposition 0.2.3, which stated that a finite dimensional
complex algebra 2 is amenable if and only if 2 is isomorphic to a finite direct sum
of matrix algebras. Hence, if such 2 is commutative, then 2 is isomorphic to Ct,
where n = dim 2. Moreover, C has unique diagonal e ® e, and so by Lemma 3.2.4,
A = C" has unique diagonal. The converse to this also applies—in [27], it was
shown that if n > 2, then there are many diagonals (or splitting idempotents) for
M,,(C), and so that if a finite dimensional algebra 2 has unique diagonal, then 2 is

commutative.

3.2.5. Example. For k > 0, put A = €'(Zs,wi), where wi(0) = 1 and wy(1) = k.

Clearly 2, is amenable, with unique diagonal d; = %(60 ® b0+ 6; ® 61). Also, since

(Zo,wr) ® €(Zaywi) = 823wk ® wr), iy, = 2K +1). Let A = @, .

Suppose 2 is M-amenable, and take k& > M. The projection Py : A — Qllk has

" P " = 1, so by Lemma 3.2.3, 2 has an approximate diagonal, bounded by M. Such

an approximate diagonal will have a cluster point, which will be a diagonal of norm
1

at most M. However, 2 has a unique diagonal, which has norm (k% + 1) > M.

Thus 2 is not M-amenable for any M.

3.2.6. Example. Put % = @, ¢'(Z,), then for each n > 0, A, = @, ¢'(Z,) has
1 1

a unique diagonal given by taking d = 1(6,®&+6,®6;) and applying Lemma 3.2.4.
However, 2, is linearly isometric to £' ({1,...,n}) ® £!(Z,) = ¢ (L, ogr 1) % Z,),
and so we have that 2, ® Ay, is linearly isometric to £ ({1,...,n}* x Z2). From this,
it i1s straightforward to show that the unique diagonal for 2, has norm n, and so as

o0
above, 2 is not amenable. Similarly, we can show that @p €*(Z,) is not amenable.
1

So it appears that we need to take care when considering the amenability of
infinite direct sums—the only viable situation appears to be the cp-direct sum of a
family of Banach algebras, each with an approximate diagonal bounded by a given,
fixed value. We will see that this construction does, in fact, yield an amenable

Banach algebra.
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We start by examining the projective norm in the tensor product of a co-
direct sum of two Banach spaces. In the proof, we use a “partitioning” procedure
to compare two elements in a tensor product space. Consider two vectors z =
K1Z1 + *++ + KmTm and y = My + - -+ + Ayn, in some complex vector space,
where each k; > 0, each Ay > 0,and k = Y " x; > Y7 A\ = A. We want to be
able to write z = Y1 !z} and y = YV Xy, where each ! > 0, each z/ is one of
T1,...,Tm, and for each 1 < j < m, k; = Y {«; : z; = z;}, with similar relations
for A} and y;. Finally, we require that for each i, k! > A.. One approach to this is
to set zjx = z;, Yjk = Yk, Kjk = K;Ae/A and Ajx = k;Ac/k, so that = = 3. Kz,
Y = 2.;k AikYjk, and each kj > Ajr. Other methods exist—we could take the
first pair (%1, A1), put &) = A} = min{k, A1}, and then repeat this with z and y

replaced by ¢ — £}z, and y — A\jy;, and so on until y = 0.

3.2.7. Lemma. Suppose X; and X, are Banach spaces, and X = X, ®,X;. Then
the natural injection X; ® X; @, X, ® X, — X ® X is isometric.

Proof. It is clearly enough to check that the injection ¥, @ ¥; P, X, 0%; — X®X

is isometric. (Given the projective norm on each tensor product space.)

Let w; € X; @ X, and w, € X, @ X,. Suppose "un“ > "'LUQH Let ¢ > 0, then
for each r = 1,2, there exists {u.x}7"", {vr}7" € X, and {)\x}7" C (0, 00) such
that w, = Y 1" Akurx ® vk, each lu,k = ||v,k|| =Ly and Y S Xgp ey W e <
||w1" + €. By partitioning as above, we can assume that m; = m, and that for each

1 S k S my, Alk Z A2k- Then

m)

wy + wp = Z[(/\lk — Aok )urk @ vik

1

A
+ TZk((Ulk + uak) ® (vik + vak) + (uik — uzk) @ (vix — vzk))],

and since each tensor product term in this expression has norm 1, we have

my A my
“wl 5L wz" < Z(I/\lk #= /\2k| + 72"(1 + 1)) - ZI: Ak < "wlu b

1
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Hence Juwy + wa] < fun]. Similarly Juws + wa] < Juse] if Jur] < Juse], and so
s + wa | < max{fus|, [wa]}.

On the other hand, we have a projection P : X — X, with [P = 1,
and so L ® P, : X® X — %, ® X has [P, ® Pi| < 1. However, we have
wi = Py ® Pi(w1 + w), so that Jwn, oo < [wi +wo| 4. A similar relation for

wa gives max{[ur | g, [nl y05,} € Fon + vl g .

Applying this to Lemma 3.2.4 gives the following.

3.2.8. Corollary. Suppose M > 0 and ,,...,2, are M-amenable Banach
algebras. Then @,y is M-amenable. "
1

If we now want to consider the amenability of a co-direct sum of a sequence
of amenable Banach algebras, we evidently require that the approximate diagonals
have a common bound. Then with the aid of the above corollary, we have an ascend-
ing sequence of amenable subalgebras, with a common bound to the approximate
diagonals, such that their union is dense. The proposition that follows is then suffi-

cient to show amenability of the direct sum.

3.2.9. Definitions. If 2 is a Banach algebra, a net of subalgebras of 2 is a family
{2 }nea of closed subalgebras of 2, indexed by a directed set A, such that if n < m,
then A, C 2A,,. We say that {U,}.ea is dense in A if U,ea 2n is dense in 2.

3.2.10. Proposition. Suppose 2 is a Banach algebra such that, for some M > 0,

there is a dense net of M-amenable subalgebras of 2, then 2 is M-amenable.

Proof. Let {2}.c1 be a dense net of M-amenable subalgebras of 2, so that for each
i € I, there is a net {di . }nea, € % ® A;, bounded by M, that is an approximate
diagonal for 2,. Now, by the definition of the projective norm, {d; .} mea, as a net
in A® A, is bounded by M. Put A = I x [L;c1 Ai, with the product order. (That is,
(i, {nk}rer) < (j, {mr}rer) if i < j and each nx < my.) This is clearly a directed
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set. For a = (i,{ni}xe1) € A, put dy = d;in. Then {Ja}aEA is a net in A ® A,
bounded by M.

By Lemma 3.2.2, it suffices to show that W(Ja)a —@ind'd e e VEL S0
for all @ € |J;; i Suppose 1 € I, a € U;, and € > 0. For each k € I with k > i,

a € Ay, so there exists ny € Ay such that

no npa— n(dk,n)a - a"ak <€ and Hdk,,, ca—a-diy, < .

"*z,‘éak

For all other k (those with k ¥ 7), choose ny € Ay arbitrarily. Put a = (i, {nk}kel).
It is now clear that if 3 = (j, {mk}kel) > a, then

Ir(da)a = aly = [r(dim,)a = aly, < ¢

and "Jg-a—a-(ig"aém = "di-m; ca—a-dj

Jim; "ukéak ='s.

Hence 7(d,)a — aand d, -a — a-d, — 0, and since each "da" < M, 2 is

M-amenable. =

3.2.11. Corollary. If M > 0 and {2;}ic1 is a family of M-amenable Banach

algebras, then A = @, 2, is an M-amenable Banach algebra.
1€l

Proof. Put A = {F C I : F is finite}, ordered by C, and for F € A, define
Ar = @0 2; C A. By Corollary 3.2.8, each 2r is M-amenable. Also, U,,GA Ar is
dense irifgi, so by Proposition 3.2.10, 2 is M-amenable. ]
Remark. There are other ways in which we could quantify amenability. For ex-
ample, we could define a Banach algebra 2 to be M-amenable if for any continuous
derivation D from 2 into a dual Banach 2-bimodule X*, there exists f € X* such
that D(a) =a- f — f-a and ||f|| = M"D". This is used in [34, Proposition 1.12]
to prove a result analogous to Proposition 3.2.10. Consider the proof of (24, The-
orem 1.3], where amenability in the cohomological sense is shown to be equivalent
to the existence of an approximate diagonal. By keeping track of the norms of the

elements involved, it is possible to show that a Banach algebra with an M-bounded
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approximate diagonal is M-amenable (in the above sense). The converse is not so
straightforward—by [23, Proposition 1.6], an M-amenable Banach algebra 2 has
1-sided M-bounded approximate identities (left and right), and consequently 2 has
a (2M + M?)-bounded approximate identity. The argument of [24, Theorem 1.3
then gives an approximate diagonal bounded by (2M + M?)% (M + 1). In the unital
case, we have a 1-bounded (approximate) identity, and so we can improve the above
bound to M + 1. In the commutative case, we have an M-bounded approximate
identity, and so the approximate diagonal has bound M?(M + 1). It seems an inter-
esting question to determine whether these bounds can be improved, and by what

margin.

Another way in which amenability could be quantified is by specifying a bound
on an approximate identity in the diagonal ideal ker 7 C A ® 2. Unfortunately,
it is not quite as easy to relate this bound to a bound on an approximate diagonal,
or to the bound on the norm of an element implementing a derivation. The proof
of equivalence of amenability to the existence of bounded approximate identity in

ker 7 is quite indirect. (See, for example, [13, Theorem 3.10].)

3.3. Property (G~)

We now turn to applying the above concepts to group algebras. We will
construct an approximate diagonal for an amenable group algebra in Theorem 3.3.2,
but before we do this, we need a better understanding of the relevant algebraic
operations on the L'(G)-bimodule L'(G x G) = L'(G) ® L'(G).

Define T3, T3, D to be linear maps Co(G X G) — Cp(G) given by

forp € Co(GxG). Then T7,T; : M(G) — M(G X G) are algebra monomorphisms,

each of norm 1 and D* : M(G) — M(G x @G) is a linear monomorphism of norm 1.
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It can be shown that D is multiplicative if and only if G is Abelian, but we are not
concerned with this here. Note also that if f € L'(G) and F € L'(G x G), then
T f)x B o=uf 4R and BT Phesdaif:

Recall from [20, Theorems 20.1 & 20.2], that if Ag is the modular function on
G, then for any f € L'(G), z € G,

[ r@az = [ 1) a
JRACE Ny [ 1e)a:

and /Gf(z“)dz= /GAG(Z"‘)f(z)dz.

3.3.1. Lemma. If f,g € L'(G), then T;(f)* D*(g) € L'(G x G) is given almost
everywhere by (T;(f)* D"(g ) (s t) ( t)g(t™) and D*(g) * T;(f) € L'(G x G)

(s,
is given almost everywhere by (D™(f 5(9))(s,t) = f(s)g(st).

Proof. By the definition of convolution of measures ([20, Section 19]), we have for

each ¥ € Co(G x G), that

(%, T3(f) * D"(g /G " /G ) () (w,0) (D (9) 2.9)

e / / bluz, ez f(u) dug(z) da
/Ac ) /z/ (u) du g(«™) dx
= [ [ vtz fue) dug(a™) e,

so that (77 (f) * D*(g))(s,t) = f(st)g(t™) for almost all s,¢ € G. Also

(4, D" /G o /G bl v9) d(D" () () d(T3 () (2,)

//w y)f(u) du g(y) dy
= /G /G $(u,y) f(w)g(uy) du dy,

from which the second formula follows.
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3.3.2. Theorem. An amenable group algebra is 1-amenable.

Proof. Let G be an amenable group. By [30, Theorem 4.16], there exists a
summing net for G, that is, a net {K,}.ea of compact subsets of G such that
for any compact U C G, \(K, A zK,)/A(K,) — 0 uniformly for z € U. Also, let
{€n}nea be a bounded approximate identity for L'(G) with Hen || <lforalln e A.
(In general, the index sets will not be the same, but by taking the cartesian product

of the index sets, we can assume that they are.)

For each n € A, define Fr, = 5r3—x,. € L'(G), d, = D*(F,) * T;(en), and
dn = € - d = Tj(en) * D*(F,) % T;(ea). Then |Fy] = 1, |du] < 1 and |do| < 1.
Also

/ d,(s,s7't) ds
G

/ F.(s)eq(ss7't) ds (Lemma 3.3.1)
&

en(t),
so that 7(dx) = €, and 7(d,) = eq*en. Thus {x(da)},_, is a bounded approximate
identity for L'(G). Also, if f € L'(G), then by Lemma 3.3.1,
Ti(en) * D™ (Fp) * Ty (en % f — f * €a)
T} () (D" (Fa) * T5(f) = Ti(f) * D™ (Fn)) T; (en)]
+ |Ti(en * f = f * €x) % D (Fy) % T; (en)|
< 2ens f— fxea] + |D(F) = T5(f) — T (f) * D(Fu)]-
Clearly "en * f— fx e,," — 0. Now suppose f = x,,, for U a compact set. Then

|D*(Fy) « T3(f) = )| = / /IF F(st)Fat™)] ds dt

//f )| Fa(s) — Fu(t™s)| ds dt

(I K ,)
= [ ————"2 dt
/u A(KR)

— 0.
Since the span of such functions f is dense in L'(G), we have by Lemma 3.2.2 that
the net {d, }nea is an approximate diagonal for L'(G). Since each "d,,1 " = I, ING)

is 1-amenable. [ ]




70 Chapter 3. Other Constructions Preserving Amenability

3.3.3. Definitions. Suppose 2 is a Banach algebra such that for some K > 0
there exists an amenable locally compact group and a dense-ranged homomorphism
v : L'(G) — A with "V" < K. Then we say that 2 has property (Gg). Supposing
2 has a dense net of subalgebras, each having property (Gg), for some fixed K > 0,

then we say that 2 has property (G*).
3.3.4. Proposition. A Banach algebra 2 with property (Gg) is K*-amenable.

Proof. By hypothesis, there is an amenable group G and a dense-ranged homo-
morphism v : L'(G) — A with "u” < K. By Theorem 3.3.2 there exists a net
{d}nea € L'(G) ® L'(G) that is an approximate diagonal for L'(G), bounded
by 1. By Lemma 3.2.3 {v ® v(d,)}nea is an approximate diagonal for 2, and since
"1/ ® l/” = "u"z, we have that {v ® v(d,)}.ca is bounded by K?, so that 2 is

K*-amenable. ®
3.3.5. Proposition. A Banach algebra with property (G™) is amenable.

Proof. Suppose 2 has property (G*), so that 2 has a dense net of subalgebras
{2n}nea, each A, having property (G ). By Proposition 3.3.4, each algebra A, is

K*-amenable, so by Proposition 3.2.10, 2 is also K *-amenable. [

We may now ask if property (G*) comes closer to characterizing amenability
than property (G). In the next section, we consider property (G™) in closed

subalgebras of commutative group algebras.

3.4. Property (G>) in Group Subalgebras

Again, since we are dealing with homomorphisms from group algebras into
commutative Banach algebras, it suffices to consider Abelian groups, and so we

again assume additive notation for the groups considered in this section.

We start by considering property (G*) in a closed ideal of a commutative

group algebra. We have seen in Theorem 1.7.2 and the subsequent discussion, that
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an ideal T of a commutative group algebra L'(G) has property (G) if and only if
there is an idempotent measure 4 € M(G) such that f — f*pisa homomorphism
from L'(G) onto Z. It is clear that such a homomorphism has norm ",u", and so
to be able to control the norm of several homomorphisms of this form, we need to
control the norm of the idempotent measures. Proposition 3.4.3 below allows us to

do exactly that. We start with a useful lemma.

3.4.1. Lemma. Suppose X = |Ji X, where Xi,...,X, € R(T). Then

||XX||B(F) = H'll("XXk“B(F) Sl

Proof. Ifn =2, then x, = Xx, T Xx, = Xx,Xx,» from which the result follows.

The case n > 2 follows by induction. .
3.4.2. Corollary. If S € Ry(T'), then "Xs" e G

Proof. Let n = N(S) and suppose S = Eo \ (U} Ex). Now, if A is an open
subgroup of I', then H = Ann A is compact and Ay € L'(H) C M(G). Moreover,

")\”"M(G) = "’\H"L'(H) =1land \y = X,- Then the norm on B(T) is translation-

invariant, so that for any clopen coset E, "xE" = 1. It follows from Lemma 3.4.1

that " < 2" -1 and "Ys" s ]

"XE,U---uEn

3.4.3. Proposition. Suppose F is a family of subgroups of T that is closed under

pairwise intersection and S € Ry4(T) is such that for each = € F, S+ = is clopen.
—

Then there exists =' € F and a bound N > 0 such that if = € F and = C =/,

then “Xsens(r) = N

Proof. We follow in the steps of the proof of Proposition 1.4.12, with additional
emphasis on controlling the index [Ag N Z: Ax N =] occurring therein. Again, by
Lemma 1.4.10 we can assume that I is discrete.

Consider first S € Ro(T'), say S = Eo \ (U" Ex), and for each 0 < k < m put

Ar = Ex — Ey. Fixsome0 < k <m. If 5;,Z; € F and =; C =;, then

(Ao NE1)/(Ae NEy) = (Ao N E1)/(Ak N (Ao N E1)) = ((Ao N E) + Ak)/As,
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and similarly for =;. (Note that the case k = 0 is trivial, but we include it anyway.)
Also ((Ao N'Z1) + Ax)/Ax € ((Ao N Z2) + Ak)/Ax, so that [Ag N ZE1:Ax N =] <
[AoNZ2:AxN=). Thus [AgNZ: Ax NE] is a non-decreasing function of = € F. It
follows that either [Ag N =: Ax N =] is infinite for all = € F, or there exists =, € F
and n; € N such that = € F and = C =, together imply [Ag N Z: Ax N Z] = ny.
Let J C {0,...,n} be the set of all k for which the second of these possibilities
occurs. Clearly 0 € J and no = 1.

Put Ay = AL, S =Fo \ (Uy\(0) Ex) and = = y=k- (We included 0 € J
to make these definitions easy.) Suppose = € F has = C =, then for each nonzero
k€ J,[Ao N Z:Ax N =] = ny and for all other nonzero k, [Ag N Z:Af N =] is
infinite. Thus, as in Lemma 1.4.12, S+ (Ao N Z) = S' + (Ao N E). Put ny = []; ns,
then [Ao N Z:A; N Z] < ny, so we can take F C Ao N = with |F| < ny and
(A;NZ)+ F = ApN=. Again, S+ (Ao NZE) = S’ + F, so by Lemma 3.4.1 and
Corollary 3.4.2,

!|XS+(_A0nE)” = H("XS'«{--y" s
vEF

< (@Y £ 1)™ =1,
Let N be this last number. It is independent of the choice of = € F with = C ='.

Then, by Lemma 1.4.11, we have

'|X5+E“B(F) w “XS+E"B(E0+E)

= IlXQ3(5)|IB((Eo+E)/E)

= ||XQ(AOHE)(S)"B(Eo/(AonE))

"XS+(AonE) "B(Eo)

— ||X5+(AonE)I|B(F)
< N.

Now suppose S € R(T'), so there exist Sy,...,S, € Ro(T) with § = U] Sk.
Applying the above argument to each Sj, we obtain =; € F and N; > 0 such that

N = [I7(Nx + 1) — 1, then by Lemma 3.4.1, these are sufficient. =

= € F and = C =) together imply "Xs+3" £ Ny Put E' (=P EpnEFvand
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Remark. Although the bound here seems unnecessarily large, it is possible to
create examples of S € Ro(T) for which N(S + Z) is exponential in N(S), and
as we are using N(S + Z) to estimate "Xs+3||, we need quite a large bound. As
an example of this, let m,n € N, put ' = Z™ x Z,,, and = = 0 x Z,, Take
{ajs : 1 < j < m,1 <k < n} to be distinct integers, and for 1 < j < m and
1 <k < n,put Ejx = 277" x {ax} x Z"* x {j}. Then with S =T \ WL B8,
N(S) = nm. However, Z™\ Q=(S) = {a,. .. @1} X+« + X {@pm1, - . ., @mn }, which
contains no cosets larger than singletons, so that N(QE(S)) = n". It was examples

such as this that motivated the method of proof for Propositions 1.4.12 and 3.4.3.

3.4.4. Proposition. Let G be a locally compact Abelian group and let = be the
component of the identity in T'. An ideal T C L'(G) has property (G*) if and
onlyif S =Z(I) € R(l') and S+ == S.

Proof. Suppose T has property (G™), so that Z is amenable and S € R.(T), by
Theorem 1.7.2. Let M > 0 and {2, }.ea be such that each 2, is a closed subalgebra
of T with property (Gy) and T = m.

Since each A, C L'(G) has property (Gas), we have by Proposition 1.7.1
that there exists a locally compact Abelian group G, and a proper piecewise affine
map a from Y, = I' \ Z(2,) into I', such that A, = x(a,). Then § = A=
MNpea Z(An) = N,ea T\ Yo Foreach y € T, y+Z is connected, and since each Y, is
clopen, either y+= C I'\Y, or 74+= C Y. Hence S+= = {y+=: v € S} CT\Y,,
so! SEREIENSIETS B

Conversely, suppose S € R (T') has S + = = S. Let F be the set of clopen
subgroups of I'. Then by Proposition 3.4.3, there exists A; € F and a bound

N > 0 such that if A is a clopen subgroup of Ag, then "X5+A"B(r) < N. Put
F = {A € F: A C Ao}, then for A € F', let uyp € M(G) be such that
and let vy : L'(G) — L'(G) be the projection f +— f % ps. Then
va is a homomorphism onto Z(S + A) with "u,\ " — ";M“ < N +1, so that Z(S + A)
has property (Gn+1). Clearly = = (,cz A, 50 Zo = Uper Z(S + A) is an ideal

ﬁA == XF\(S+A)’
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of L'(G) with Z(Zy) = Nper(S+A) =S+ = = S. Since S € R(T) is a set of
synthesis,

I(S) =T = |J Z(S +A),

AeF'

and since each Z(S + A) has property (Gn41), Z(S) has property (G™).

Thus, in the case of group algebra ideals, property (G*) does occur in cases
where property (G) does not. For instance, if G = ) {° Z,, so that ' = [[{° Z; and
= = {e}, then all amenable ideals in ¢'(G) (including those of finite codimension)
have property (G*), whereas no finite set in I' is open, so no ideal of finite codi-
mension has property (G). However, in cases where = # {e}, = will have proper
closed subgroups, so that there will be many S C R (T") with S C S+ =, and hence

many amenable closed ideals of L'(G) without property (G*).

It is also possible to show that many of the algebras L}, (G) lack property (G*).
For instance, if ' is connected, then by Corollary 1.3.5, a homomorphism from a
group algebra into L'(G) has range {f € L'(G) : f = 0 off Go} = L'(Gy), for
some clopen subgroup Go of G. Now, if L'(Go) C L},.(G), then 2> = e for each

z € Go. Thus, Gy is of bounded order (1 or 2), and since I'/ Ann(Gp) = Go is

1
sym

connected, we must have Go = {e}. Thus L, _(G) cannot have property (G*).

This example also excludes the possibility of building a dense chain of closed
algebras {0} = %, C %; C A, C --- in A such that for each k > 0, Ax_; is a
closed ideal of A; and A/, has property (G), for we cannot get past the first
step of having a nonzero 2; with property (G).

3.5. Property (G>) in Unital Banach Algebras

More interesting, perhaps, is the following extension of Theorem 2.2.1, which

excludes the Cuntz algebras O, from having property (G*).

3.5.1. Theorem. Suppose 2 is a unital Banach algebra with property (G*), then

span{ab — ba : a,l; € A} N Z(A) = {0}.
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Proof. Suppose K > 0 and 2 = Us,ea An, where each 2, is a closed subalgebra

with property (Gx) and n < n’ = A, C A,.. Due to this latter property, we
will be able to replace {2, }.ea by any subnet and retain the assumed properties.

For eachn € A, 2, has property (Gg), so there is an amenable locally compact
group G, and a continuous dense-ranged homomorphism v, : LY(G,) — 2, with
|| < K. Take z € Z(2) with |2] > 2, then there is some z € |5 U
with 3K2||z — zon <1 Also27 N UnEA A, # D, so for some ng € A we have
20 € Ap, and Ay N A # 3. Then vy, : L'(G,,) — 2 is a homomorphism
with g vy, N A" # &, so by Lemma 2.1.1, we have e € 2A,,. Replace A by
{ neEA:n>ng }, so that we can assume without loss that {zp, e} C 2, for each
R € A.

As in the proof of Theorem 2.2.1, we have ¥, : A, — Cy(G,) given by
Vo (a)(z) = $(Pn(8:2)ain(é;)) (@ € An,z € Gp). Then |W,| < K2 Let M, be
a left-invariant mean on Cy(G), then M, o ¥, € 2A: has ,Mn o lIln" < K?, and
M, o \Iln(ﬂ(ér—x)aﬁ(ér) — a) =0, for eacha € A, and z € G,. Let f, € A" be an
extension of M, 0V, by the Hahn-Banach Theorem, so that "fn || — | A[,,o\I'n" LR

Thus we have a bounded net {f.}neca in A". By Alaoglu’s Theorem, {f,}nca
has a weak™* convergent subnet. We can assume this to be {f.}nea. Let f € A" be
the weak™® limit of this net, then | f| < KZ.

Now, if a,b € UnEA A,, say a,b € A, thenn > ng = f,(ab— ba) = 0,
and so f(ab — ba) = lim,ea fa(ab — ba) = 0. Hence, as in Theorem 2.2.1, we have
that span{ab— ba : a,b € A} C ker f.

Also, for each n € A, W, (20)(z) — 1 = ¢(#(6:1)(20 — 2)7(62)) (z € Gn),
s0 |¥n(20)(2) — 1] < 1. Thus |fu(z0) — 1| = [M,,(\p,,(zo) = 1)‘ < 13 ‘Henee
|f(z0) — ll < 1/3, and since |f(z) - f(zo)l < 13, we have f(z) # 0. [

So it seems that property (G°) is not much more helpful in characterizing
amenability than properties (G) or (G’).
One last hope for this sort of construction is that we may be able to replace

the group algebra occurring as the domain of each homomorphism by an amenable
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closed Z, ideal of a group algebra L'(G,). Unfortunately, this also fails for the

Cuntz algebras, and for €., (Z), by virtue of Lemma 2.1.1.

sym




Chapter 4. Dense-Ranged Homomorphisms

We have seen generalizations of Theorem 1.5.6 to the situation of homomor-
phisms between the Fourier algebras on piecewise affine sets. In this chapter, we will
examine the range of homomorphisms between other types of Banach algebras. In
particular, we consider conditions that ensure that a dense-ranged homomorphism

is onto.

4.1. Dense-ranged Homomorphisms into

Commutative Group Algebras

An easy consequence of Theorem 1.5.6, is that a dense-ranged homomorphism
between commutative group algebras is onto. In this section we consider the question
of whether the same can be said if we replace one of the algebras by a more general

Banach algebra.

Note that in the case where the domain is a commutative group algebra L'(G),
there is an easy answer—if G is finite, then any dense-ranged homomorphism
€'(G) — A is onto, whereas if G is infinite, the Fourier transform is a continu-
ous homomorphism L'(G) — Co(T') with proper dense range. (See [37, Theorems
1.2.4 and 4.6.8].) The case where the codomain is a commutative group algebra has

a similar answer.

4.1.1. Proposition. Suppose G is an infinite locally compact Abelian group.
Then there exists a commutative semisimple Banach algebra 21 and a continuous

monomorphism v : A — L'(G) with proper dense range.

Proof. Note that we are seeking a proper dense subalgebra of L'(G) with a
complete algebra norm that dominates a multiple of "ﬂl It is clear that such a

subalgebra is necessarily commutative and semisimple. We consider two cases. If G
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is non-discrete, put % = L'(G) N L*(G) with “f" = ﬂf"1 + ||f|2 Then (A, |||) is

a Segal algebra (see [32, section 6.2]) that is a proper dense subalgebra of L'(G).

If G is discrete we look for a weight function w : G — [1, co) that is submul-
tiplicative and unbounded, since then £'(G,w) = {f € £}(G) : f-w € {}(G)} isa
Beurling algebra (see [32, section 6.3]) that is a proper dense subalgebra of £'(G).

Supposing H is a subgroup of G and that we have such a weight w’ on G/H, then
w = w' 0 Qy is an appropriate weight on G. By [37, Theorem 2.5.2], every Abelian

group has a countably infinite quotient, so we can assume that G is countable.

Take a sequence {¢ = z1,Zs,...} € G that generates G and such that for
each k, zx4+1 € Gy, the subgroup generated by {z;,...,zx}. If this sequence is
finite, say {¢} = G1 C G, C --- C G, = G, then some Gj41/Gi is infinite,
and being singly generated, must be isomorphic to Z. Let K be the maximum such
k, then G/Gx = Z x F for F a finite group, and since Z x F can be given the

unbounded submultiplicative weight w(n, z) = 1 + |n|, we are done.

Otherwise, G; C G3 C --- is infinite, in which case we define an unbounded

submultiplicative weight on G by w(z) = min{n > 1: z € G,.}. L]

The proper dense subalgebras of L'(G) considered in Proposition 4.1.1 are
not amenable. If G is non-discrete, the Segal algebra A = L'(G) N L*(G) has
AxA C L*(G) * L*(G) C A(G) C Co(G). Let K C G be a compact non-open set,
then x, € A, but x, ¢ Co(G), so x,. does not factor. Hence 2 does not factor,
and cannot be amenable. More generally, if 2 is a proper Segal algebra in L'(G), for
G any locally compact group, then by [9, Theorem 1.2], 2 does not have bounded

approximate identity, so that 2 is not amenable.

Next, if G is a locally compact group and w : G — (0, 00) is a submultiplicative
continuous weight on G, consider A = L'(G,w). Clearly 2 € L'(G) if and only
if w is bounded below. Also, by [18, Theorem 0], 2 is amenable if and only if G
is amenable and {w(z)w(z™) : z € G} is bounded. Hence, if 2 is an amenable

Beurling subalgebra of L'(G), then {w(z) : ¢ € G} is bounded, so that % = L'(G).
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It is interesting to compare this with [40], where it is shown that for a weight on an
amenable group G, there is a homomorphism 3 : G — R* such that w(z) > ¢(z)
(z € G), and so the weight w'(z) = w(z)/¥(z) is bounded below by 1. Then the
mapping f + f -1 is an isometric isomorphism L'(G, w) — L'(G,w'). Thus any
Beurling algebra on an amenable locally compact group G is isometric to a Beurling

subalgebra of L'(G).

These observations about the non-amenability of certain proper dense subalge-
bras of group algebras raise the possibility that if 2 is an amenable Banach algebra
and v : A — L'(G) is a continuous homomorphism with dense range, then v is

onto. We investigate this in the next section.

4.2. Minimality

4.2.1. Definitions. Suppose ‘B is a Banach algebra. A Banach subalgebra of B

is a subalgebra 2 with its own complete algebra norm "Hu such that the inclusion

mapping A — B is continuous. We say B is minimal if it has no proper dense
Banach subalgebra. We say B is minimal-amenable if it is amenable, but has no
proper dense amenable Banach subalgebra. More generally, if (P) is any property
of Banach algebras, we say that a Banach algebra 2 is (P)-minimal if 2 has (P)
and A has no proper dense Banach subalgebra with (P).

Note that the continuity criterion is sometimes superfluous—if B is commuta-
tive and semisimple, then any homomorphism 2 — B is automatically continuous,
and so the inclusion A — ‘B is continuous. We could make the above definitions
with the continuity criterion omitted, but it seems more natural to consider contin-

uous homomorphisms, due to Proposition 0.2.4.

In terms of minimality, some results we have already seen are that for G an
infinite locally compact Abelian group, L'(G) is not minimal and Co(G) is not

minimal-amenable. However, L'(G) is (G)-minimal. In fact, we have the following.
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4.2.2. Proposition. Suppose G is a locally compact Abelian group and T is an
ideal of L'(G) with bounded approximate identity. Then L'(G)/T is (G)-minimal.

Proof. By (28, Theorem 13], T = I(X), for some X € R.T), and then
L'(G)]T = A(X). Thus if A is a proper dense subalgebra of LY(G)/T with
property (G), we obtain a locally compact Abelian group G’ and a homomor-
phism v : L'(G') — A(X) with range dense in A(X). Then, by Theorem 1.6.9,
mg v = &(a), which is closed, and so v is onto. Thus % = L'(G)/Z and so L'(G)/T

is (G)-minimal. [
We develop some basic properties of such minimality conditions.

4.2.3. Proposition. Suppose (P) is a property of Banach algebras that is pre-
served by taking the quotient by a closed ideal. Then a Banach algebra B with
(P) is (P)-minimal if and only if any dense-ranged homomorphism from a Banach

algebra with (P) into B is onto.

Proof. Suppose B is a (P)-minimal Banach algebra, 2 is a Banach algebra with
(P), and v : A — B is a dense-ranged homomorphism. Put Z = ker v, A = mgv

and norm 2’ by "u(a)"g, = inf,g"a + 2"91 = "a +I|m/r' Then 2’ is a dense Banach
subalgebra of B. Also, A’ = /T has (P), so that A = 2’ and v is onto. The

converse is trivial. s

Suppose (P) is a property of Banach algebras. Define (P") to be the property
given by “A has (P*) if and only if 2 is unital and 2 has (P).”

4.2.4. Proposition. Suppose (P) is a property of Banach algebras preserved by
adjoining a unit. Then a unital Banach algebra 2 is (P)-minimal if and only if 2

is (P")-minimal.

Proof. It is clearly enough to check that if 2 is (P*)-minimal and B is a dense
Banach subalgebra of 2 with (P), then e € ‘B. Supposing e ¢ B, then B + Ce is a
dense unital Banach subalgebra with (P*), and so B+Ce = 2. Then B is a maximal
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ideal of the unital algebra 2, so that B is closed, and not dense. (Contradiction.)

4.2.5. Proposition. Suppose (P) is a property of Banach algebras such that a
non-unital Banach algebra 2 has (P) if and only if A" has (P). Then a non-unital
Banach algebra 2 is (P)-minimal if and only if 2* is (P)-minimal.

Proof. Suppose 2 is (P)-minimal, and B is a dense Banach subalgebra of 2* with
(P"). Clearly the unit elements of 2! and B coincide. Let ¢ : %! — C be the
homomorphism (a, z) — 2. Then po|s € ®x, so By = A N B is a maximal ideal
of B of codimension 1. Hence By + Ce = B. Giving B, the norm from B, B, has
(P), and is a dense Banach subalgebra of 2, so that By = 2. Thus B = 2* and
so A" is (P*)-minimal. Then by Proposition 4.2.4, 2 is (P*)-minimal.

Conversely, if 2" is (P)-minimal and B is a dense Banach subalgebra of 2 with
(P), then B +Ce is a dense Banach subalgebra of 2* with (P*). Hence B +Ce = 2,
and 8 =% (]

The above propositions clearly apply to minimality. Also, since quotients, uni-
tizations and finite-codimensional ideals of amenable Banach algebras are amenable
(by Proposition 0.2.4, [23, Proposition 5.1], and [13, Corollary 3.8], respectively),
the above propositions apply to minimal-amenability. The following lemma is more

specific to these two cases.

4.2.6. Lemma. If 2 is a minimal (respectively minimal-amenable) Banach algebra
and T is a closed ideal (respectively amenable closed ideal), then /I is a minimal

(respectively minimal-amenable) Banach algebra.

Proof. Consider first the minimal case. Suppose v : B — /T is a monomor-
phism with range dense in A/Z. With Q@ : A — /I the quotient mapping,
put o' = Q7' (v(B)), and since v is 1-1, we can define p : A — [0,00) by

pla) = |v7(a + I)"‘B. Then p is a submultiplicative seminorm on 2, so that
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laly = "a"Ql + p(a) defines an algebra norm on 2. Consider 2'/Z. For each
a €U, put b=v"(a+7I)€ B. Then

Itla = a) < Ja + Zhaz < infla + =l + ingpla + 2

= la+ Zlg)r + [t] 5
< (vl + D) 1el g-
Hence A'/T = B. Then 2A'/T and T are complete, so 2’ is a Banach algebra. Also,
we have that the inclusion mapping 2" — 2 is continuous and 2’ is dense in 2, so
that by minimality, 2’ = 2 and v(®B) = 2A/Z. Thus 2/Z is minimal.
In the case where 2 is minimal-amenable and Z is amenable, we consider a
dense-ranged monomorphism v : B — 2A/Z, where ‘B is amenable. Then 2'/Z = B

and T are both amenable, so that by [23, Proposition 5.1], 2" is amenable, and we
can again conclude that A" = 2 and v(B) = A/Z. [

It is not clear whether the amenability of Z is necessary for the “minimal-
amenable” version of the above. Nor is it clear whether commutative group alge-
bras are minimal-amenable. We do, however, have the following, which should be

contrasted with Proposition 4.2.2.

4.2.7. Proposition. Suppose G is an infinite locally compact Abelian group.
Then L'(G) has an ideal T such that L'(G)/T is not (G)-minimal, and hence not

minimal-amenable.

Proof. If G is compact, then by [37, Theorem 5.7.5], there is an infinite Sidon set
E contained in . Then L'(G)/Z(E) = co(E). Let I' be a discrete group of the
same cardinality as E, so that co(E) = co(I"). However, A(T') is a proper dense
Banach subalgebra of co(I"), and hence L'(G)/Z(E) is not (G)-minimal.

If, on the other hand, G is not compact, then by [37, Theorems 5.2.2 and 5.6.6],
there exists a compact Helson set E C I' homeomorphic to the Cantor set. Then
L'(G)/Z(E) = C(E) = C([I° Z.), which is again not (G)-minimal, as A([[{° Z,)
is a proper dense subalgebra of C([[;’ Z). L]
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We should note that the term “minimal” (or “minimal-amenable”, etc) is only
supposed to indicate the lack of a certain type of dense subalgebra, and as such,
only refers to an ordering (by inclusion) of such dense subalgebras. It is tempting
to lift this to an order on the category of Banach algebras (or the category of
amenable Banach algebras, etc). Such an order would be defined by A < B
if there is a dense-ranged monomorphism 2 — B. However, it is possible to
have non-isomorphic Banach algebras 2, B with 2 < B < 2. We give an
example where both 2 and B have property (G). Put % = 2%; @ %, & s,
and B = B; © By, where A, = B; = A(Z x R), A3 = B, = Co(Z x R),
and A, = {f € Co(Z x R) : f(n,") € AR) (n € Z)} = @, A(R). Then
B, & ‘B; = By, B, BB, = B, and B, <X A; < B,. Hence .

B =B, 0B:9B;, < A < B, 6B, HB, = ‘B.

Suppose 2 = B, so that there is an isomorphism v : A — B. Now, each of

Ay, Ay, A3, B, B, has carrier space Z x R, and so v*|¢, is a homeomorphism
a:(ZxR)U(ZxR)—> (ZxR)YU(ZxR)U(Z x R).

Consider a coset E; = {n} xR C ®g,, then B|g, = A(R), and so A|,(5,) = A(R).
However, if a(E;) C ®q,, then A|,g,) = Co(R). Hence a(E) is either one of
the lines in ®q, or one of the lines in ®q,. Similarly, if £, = {m} x R C ®g,,

then a(E;) C ®q,. Hence v(A;, & A;) = B; and v(A3) = B,. Forr = 1,2,

put ¥, = o (‘Dq,) C ®g,. Then since the monomorphism v|y, : A; — B; is a

homomorphism of group algebras, aly, is piecewise affine. Thus ¥; € R(Z x R)
is piecewise-affinely homeomorphic to Z x R. By considering the structure of an
element of R(Z X R), it is easily shown that ¥ = (Z x R)\ Y, € R(Z x R) is
also piecewise-affinely homeomorphic to Z x R. Thus B,|y, = A(Z x R), and so
A, = A(Z x R). This is clearly not the case.
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4.3. Minimality in Finitely-Generated

Commutative Banach Algebras

Suppose 2 is a commutative unital Banach algebra, generated as a unital
Banach algebra by elements ay,...,a,. Then there is a natural homomorphism vg
from C[zy,. .., z,], the ring of polynomials in n variables with complex coefficients,
into 2, given by v(p) = p(a1,...,pn). Since ay,...,a, generate A, rng v is dense
in A. Suppose |||| is an algebra norm on C[z,...,z,] such that v is continuous,

and let B the completion of (C[21 gl

|"> Then vy extends by continuity to a
continuous dense-ranged homomorphism v : 8 — 2. We apply this construction,
in the form of a functional calculus, to determine when a finitely-generated Banach

algebra is minimal.

4.3.1. Definitions. A polydisc is a set of the form
Avzgiil = b aue Caller] <tril, ol i tueton )i

where n is the dimension of A and r € (0,00)" is the polyradius of A. We will
use various abbreviations—omitting the superscript n if not required, and using a
single value t € (0, c0) for the polyradius (t,...,t), so that A, = A,..+). Now, for
such A, the polynomials in n complex variables form a subalgebra of C(A), whose

closure (in the uniform topology) we call the polydisc algebra on A, denoted A(A).

The algebra A(A) is the set of functions A — C that are holomorphic on A
and continuous on A. It is a commutative semisimple Banach algebra whose carrier
space can be naturally identified with A. It is not a regular Banach algebra, a fact

that makes our subsequent investigations more difficult.

Now, the functional calculus of [8, section 20], is not quite suited to our needs—
it does not guarantee a homomorphism from an algebra of holomorphic functions
into 2 unless 2 is semisimple. For this reason, we introduce a semisimple algebra

between the algebra of holomorphic functions and 2. This restricts our functional

calculus to functions that are holomorphic on a sufficiently large polydisc. As we
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will only be considering holomorphic functions on polydiscs, anyway, this does

2
not concern us. In the following, r(a) = lim,,_.oo||a"l" is the spectral radius of

an element a € A, and the joint spectrum of (ai,...,a,) is og(ay,...,a,) =
{ (¢(a1),...,¢(as)) : ¢ € q }. Clearly if p is a polyradius with each py > r(ax),
then og(ay, ..., a,) C A,.

4.3.2. Lemma. Suppose ay,...,a, are commuting elements of a unital Banach
algebra 2. Then the natural homomorphism vy : Clz1,...,2,] — 2 extends
uniquely to a continuous homomorphism v, : A(A,) — 2, where r is a polyradius
with ry > r(ax), for each 1 < k < n. Furthermore, if r' is another polyradius

with each 1}, > ry, and f € A(A,), then v (f) = v:(flz,)-

Proof. For each 1 < k < n, take pr > 0 with 7y, > pr > r(ax). Then for
each k, p,:""a" " is convergent to 0 or 1. In either case {p;""a""};o is bounded, say
p;"”a"" < My, for each n. Put M = []} Mi. Let S be the semigroup Z7, and

define a weight w on S by w(sy, ..., s,) = [[] pi*. Note that coo(S) = Clzy, ..., 2],

Sn

grars

extended by
linearity. Giving coo(S) the norm from ¢'(S,w), we have

[l < Y 1fal [o(85)]

SES

< ST UAI e - e

SES

< Sl Mgl - Mgl

SES

<M Y Ifilw(s)

SES

=M Ilf’“l’(s.w)'
Thus o is continuous, and the extension of 1o by continuity is a homomorphism
¥, : 0(S,w) - 2.
It is readily shown that ¢'(S,w) has carrier space {gaz Tz €D, }, where

n

@:(f) = Y,es f(s)z' ...z, and the topology on @ (s.) corresponds to the
standard topology on A,. With this, ¢(S,w) is semisimple. Moreover, £'(S,w)




86 Chapter 4. Dense-Ranged Homomorphisms

has generators €; = 6(1,..0),---,€n = &(o,..,1), Whose joint spectrum is A,. Thus
we can apply the functional calculus of [8, Corollary 20.6], so that for any r > p,
there is a continuous homomorphism 6, , : A(A,) — €'(S,w) with 0, ,(2) = ex.
Composing this with ¢, gives a continuous homomorphism v, : A(A,) — 2 such
that each v,(zx) = ax, and so v, is an extension of vy. The uniqueness of v, follows

from the fact that C[z, ..., z,] is dense in A(A,).

Finally, if 7’ is a polyradius with A, C A/, then the restriction homomorphism
Pg e A(A,) — A(A,), given by f — flz , is norm-reducing, and consequently
continuous. Then px (p) = p, for any p € Clz1,...,2,], and so v, 0 pz_is an
extension of vo to a continuous homomorphism A(A,/) — 2. Hence v, 0 p5 = v;.

An alternative approach to the homomorphism 6, , above that does not use the
existing functional calculus is as follows. We can consider ¢'(S,w) to be a set of
power series in 21, . . . , 2. It consists of all holomorphic f whose power series (at 0)
is absolutely convergent throughout A,. It is an elementary theorem of complex
analysis that if f is a holomorphic function on a polydisc A, then the power series
of f at 0 is absolutely convergent throughout A,. Henceif A, C A,, then the power
series at 0 belongs to £'(S,w). This gives us a homomorphism A(A,) — €'(S,w).

A point worth noting is that the homomorphism 6, , is 1-1, as is any pz . This
follows by the identity theorem for holomorphic functions. Indeed, for this reason

we will consider A(A,/) C A(A,) when A, C A,

Now suppose 2 is minimal and generated by {a;,...,a,}. Then with r as
in Lemma 4.3.2, v, : A(A,) — 2 is a dense-ranged homomorphism, so by Lem-
ma 4.2.3, v, is onto. Thus A = A(Z,)/I,, where Z, = ker v,. Moreover, this occurs
for any polyradius r such that each r, > r(ax). This seems quite exceptional, for if
A, C A, then the restriction homomorphism pz_: A(A,) — A(A,) has proper
dense range, whereas Q1, o pz : A(A,) — A(A,)/T, is always onto. We will
show that this can occur only in the case where the minimality of A = A(A,)/Z, is

trivial—that is, when 2 is finite-dimensional.
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By Theorem 1.2.1, we have a, = v}|e, : ®a — A,. Note that a,(p) =
(¢(ar), .., ¢(as)) € C*, and so a, = a,, enabling the omission of the subscript

from here on. Thus a(®y) C A, C A,, where p and r are as in Lemma 4.3.2.

4.3.3. Proposition. A finitely-generated commutative minimal Banach algebra

has finite carrier space.

Proof. Let 2 be a finitely-generated commutative minimal Banach algebra. With-

out loss, 2 is unital and the generators ay, . . . , a, satisfy "ak“ < 1. By Lemma 4.2.6,

2A/rad A is also minimal, and since the carrier space of 2/rad 2 is naturally identi-
fied with @4, we can assume that 2 is semisimple. Let r be a polyradius with each
re > 1, let v, : A(Z,) — 2 be as given by Lemma 4.3.2, and let Z, = ker v,. By

the above discussion, v, is an epimorphism, so that 2 = A(A,)/Z,.

Now, since we are assuming that 2 is semisimple, we have, by Theorem 1.2.1,
that with X, the hull-kernel closure of a(®q), Z, = Z(a(®a)) = Z(X,). Moreover,
each f € Z, is holomorphic on A, so that X, N A, is an analytic variety in A,.
But % = A(A,)/ kerv, = A(A,)/Z(X,) which, by [8, Proposition 23.5], has carrier
space X,. It follows that a is a homeomorphism from ®q onto X;, so that X, C A,.
Hence a(®q) = X; N A, is a compact analytic variety in A,, which is necessarily

finite, by [19, Corollary III1.B.17]. Finally, a is injective, so ®q is finite. (]

It is in the following lemma that we use the functional calculus in the non-
semisimple case to obtain homomorphisms into a commutative unital Banach algebra
2 that is local (that is, 2 has a single maximalideal). We make use of the local theory
of holomorphic functions of several complex variables. We define two holomorphic
functions f,g to be equivalent at 0 if there is a neighbourhood U of zero with
flv = glu. We define two analytic varieties V', W to be equivalent at 0 if there is a
neighbourhood U of zero with VN U = WNU. The equivalence classes thus formed
we will call the germs of holomorphic functions and the germs of analytic varieties,
respectively. As in [19], we denote the ring of germs of holomorphic functions in

n complex variables by ,O. In the notation above, this is the union (actually an
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inductive limit) of the Banach algebras .A(A,) over all polyradii r. (We have seen
that these algebras get larger as the polydisc gets smaller.) If Z is an ideal of ,O,
then loc Z, the locus of Z, is defined to be the germ of the analytic variety on which
all f € T are zero. (This is well-defined, by [19, Proposition 2.E.9].) In our notation,
this is the germ of a variety determined by the analytic sets Z(Z N A(4,)), as A,
decreases. We also have the concept of id(V), the ideal of V', where V is a germ of
an analytic variety. This is id(V), the set of f € ,O such that f is zero on some
representative of the germ. This corresponds to the notion of the kernel, and in fact,
id(V) = U, Z,)(V+), where the union is taken over all polyradii r such that there
is a representative V; of V that is an analytic variety in A,. The most significant
theorem of this local theory is [19, Theorems II.E.20 and III.A.7], commonly called

the Nullstellensatz, which states that for an ideal of ,O, we have

idloc(Z) =radZ = { f € ,O: f™ € I, for some m € N }.

4.3.4. Lemma. A commutative unital Banach algebra that is finitely-generated,

local, and minimal is finite dimensional.

Proof. Suppose 2 is a finitely-generated commutative unital local minimal Banach
algebra. Let ¢ be the unique non-zero homomorphism 24 — C. If we replace the
set of generators {ax : 1 < k < n}by {a;c —plap)e:1<k<n }, we can assume
that a(®q) = 0 € C". Thus each r(ax) = 0.

Now, for any polydisc A, C C*, we have an epimorphism v, : A(A,) — 2, and
since v,(f) = vy(f|a,) whenever A,» C A,, we have a homomorphism v’ : ,O — 2.
Clearly ker v’ = |J, ker v, and so loc(kerv') = (), loc(kerv,) = ), Z(kerv,) =
N,{0}, by Theorem 1.2.1.

Hence, T = kerv' is an ideal of ,O with loc(Z) = {0}, and so by the
Nullstellensatz, we have that if f € ,O and f(0) = 0, then f™ € Z, for some
m > 0. In particular, for each 1 < k < n there exists my > 0 such that z"* € T.
Thus a]* = 0foreach1 < k < n,and so A = span{ [I7 ak* : each 0 < pp < my },

which is clearly finite-dimensional. [
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4.3.5. Theorem. Suppose U is a finitely-generated commutative minimal Banach

algebra. Then 2 is finite dimensional.

Proof. By Proposition 4.2.5, we can suppose, without loss, that 2 is unital. Then
by Proposition 4.3.3, ®q is finite, say ®o = {¢1,...,9.}. Let a1,...,a, € A be
such that for each 1 < k < n, ax(px) = 1 and for j # k, ax(¢;) = 0. Each a; has
a? — a; € Rad 9, and so by [31, Theorem 2.3.9], there exists an idempotent ex € A
with ex — ax € Rad 2, so that €, = ax. Now, for j # k, e;ex is an idempotent in
Rad 2 and so eje; = 0. Similarly e — 2’11 er = 0. Hence A = Ae; @ --- @ Ae,,, a
direct sum of principal ideals. For each 1 < k < n, put Z; = (e — e;), an ideal
such that e, = A/I;, so that ®q., is naturally identified with Z(Zy) = {¢x}-
Hence e, is a finitely-generated local commutative unital Banach algebra, which
is minimal, by Lemma 4.2.6, and consequently finite-dimensional, by Lemma 4.3.4.

Hence A = @] ey is finite-dimensional. g

4.4. Some Minimal Algebras

It may seem that we can always find a proper dense Banach subalgebra of
an infinite-dimensional Banach algebra A. We have seen that this is the case
for L'(G) and Co(G), where G is an infinite locally compact Abelian group, and
for finitely-generated Banach algebras. It is also possible to show that if S is a
semigroup, then ¢'(S) has a proper dense subalgebra, we only need construct an
unbounded submultiplicative weight w on S, and then ¢'(S,w) is a proper dense
Banach subalgebra of ¢'(S). In contrast to this, we show that there are many
infinite-dimensional Banach algebras that are minimal. We begin with a special

case of [16, Definition 2.1].

4.4.1. Definition. A locally compact topological space X is called an F-space if

C(X), the algebra of all continuous functions X — C, has the property that every

finitely generated ideal is a principal ideal.
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Any X discrete set is an F-space, and by [16, Theorem 2.3], any X is an F-space
if and only if AX, the Stone-Cech compactification of X, is an F-space. We then

have the following result from [6, Theorem A].

4.4.2. Proposition. If X is a compact F-space, then C(X) is a minimal Banach

algebra. L]

Note that any homomorphism 2 — C(X) is automatically continuous, and so
the continuity criterion in definition 4.2.1 is not needed. Since the algebras C(X)

are amenable—they have property (G)—we have the following.

4.4.3. Corollary. If X is a compact F-space, then C(X) is a minimal-amenable

Banach algebra. -

Particular examples of this are if S is any set with its discrete topology, then
BS is a compact F-space, and so C(3S) = £*°(S) is a minimal Banach algebra. The
smallest example of this is £*° = ¢*°(N), which is non-separable. More generally,
note that by [16, Corollary 2.4], an infinite compact F-space X does not satisfy the
first axiom of countability at any z € X, that is, there is no countable base to the
topology at any point z € X. It follows that C'(.X') is non-separable. Thus, our only
examples of minimal Banach algebras are finite-dimensional or non-separable. We
summarize some examples of Banach algebras that we have seen to be non-minimal,
or can easily be shown to be non-minimal. These examples include many separable
Banach algebras :
(i) Co(X), where X is an infinite locally compact Abelian group or an
infinite closed subset of R™, or any continuous image of either of these,
(ii) L'(G), where G is an infinite locally compact group,
(iii) €'(S), where S is an infinite semigroup, (construct an unbounded
submultiplicative weight on S)
and many others. No example is known to the author of an infinite-dimensional

separable minimal Banach algebra.
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4.5. Conjectures and Questions

We conclude this chapter with some conjectures and open questions. The
conjectures are distinguished from the open questions solely by certain prejudices of

the author.
4.5.1. Conjecture. Commutative group algebras are minimal-amenable.
4.5.2. Question. Is there a separable commutative minimal Banach algebra?

We should consider the following rather vague question, as an attempt to attain
a characterization of amenability along the lines of property (G). A similar question

could be asked about commutative amenable Banach algebras.

4.5.3. Question. Is there a relatively small, easily-defined class A of amenable
Banach algebras such that any amenable Banach algebra has a dense Banach sub-

algebra isomorphic to a member of A?
Evidently such a class will contain all minimal-amenable Banach algebras.

4.5.4. Conjecture. There is an amenable Banach algebra 2 such that 2 does

not contain a minimal-amenable Banach algebra as a proper dense subalgebra.

That is, the lattice of dense amenable Banach subalgebras of 2 has no minimal
elements. If this conjecture fails, the smallest possible class .A in question 4.5.3
would be the class of minimal-amenable Banach algebras. Thus, providing this is a
“relatively small, easily-defined” class of Banach algebras, this question would have

an affirmative answer.







Appendix A. Homomorphisms Into
Measure Algebras

Let G; and G; be locally compact Abelian groups. The results of Cohen,
used in Chapter 1 to characterize the range of homomorphisms L'(G;) — L'(G,),
also concern homomorphisms v : L'(G;) — M(G;), and the extension of such
homomorphisms to a homomorphism 7 : M(G;) — M(G,). It is natural to consider
whether we can derive results characterizing the range of such homomorphisms v
and 7 in a way analogous to Theorem 1.5.6. The sort of characterization of range we
seek is one in which there is an equivalence relation ~ on some Y € R(I3) such that
the range is the subalgebra of M{G;) of measures whose Fourier-Stieltjes transforms

are class functions of this equivalence. For this, define
k(~)={p € M(G,) : p =00ff Y and ji(v1) = fi(72) whenever y; ~ Y2}

When ~ is the equivalence relation determined by a function ¢» with domain Y, we
will use &(¢) for k(~). Again, we will use additive notation for the group product

of all groups in this section.

A.l. Homomorphisms from Group Algebras

in to Measure Algebras

Let v be a homomorphism L'(G;) — M(G;) with rngv € L'(G2). Then
a:Y — I} (as in Theorem 1.3.3) is non-proper. We consider the range of » in such
a case.

In the analysis of proper piecewise affine maps in Chapter 1, we saw that such
amap a: Y — I} is built up from pieces of the form 7,, 0 3 0 Q4 o 7_,,[s, where
S € Ro(I2), 72 € S, Qa is the quotient by some compact subgroup A C Eo(S)— 72,
1 is a topological group isomorphism from (Eo(S) —+)/A onto =, a closed subgroup
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of I}, and ;1 = a(y2) € I}. For a non-proper piecewise affine map, the situation is
similar, with two possible differences—the closed subgroup A could be non-compact,
and ¥ may no longer have a continuous inverse. We consider embryonic cases of

each of these.

Suppose T is a locally compact Abelian group and A is a closed, non-compact
subgroup. Put @ = @, : ' — I'/A. With H = AnngA, we have algebra
homomorphisms v : L'(H) — M(G) and # : M(H) — M(G). Then by [37,
Theorem 2.7.1],

#(a) = {g € M(G) : j1 is constant on cosets of A}

= {p € M(G) : p is concentrated on H},

so that k(o) = M(H), and rng v = &(a).

Now consider non-proper behaviour of the other type—where 1>~ is not contin-
uous. An extreme, but simple, example of this is where a is the identity map I; — T'.
In this case the homomorphisms are the natural injections 7 : A(I') — B(I})
and 7~ : B(I') — B(I.). By [37, Theorem 1.9.1], the second of these has range
B(T') = B(I';) N C(T'), whereas the range of the first is a subset of this. These are
each point-separating algebras on I'y, so that the only possible equivalence relation
such that rng v C &(~) is “=". But &(=)" = B(I}), so that unless I is discrete, v

is not onto. But if I" is discrete, then a is proper.

Thus in order to characterize the range of a homomorphism L'(G;) — M(G,),
or its extension M(G,) — M(G,), some topological conditions will also be necessary

on the transforms of the measures. These are not in the spirit of the results we seek.

We can, however, avoid this by specifying that I3 is discrete, for then = = rng
will be a closed subgroup and 1 will have continuous inverse. Indeed, it is not difficult

to modify the arguments of Section 1.5 to prove the following.

A.1.1. Theorem. Suppose G, is a compact Abelian group, G, is a locally
compact Abelian group, v : L'(G,) — M(G;) is an algebra homomorphism and
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Y € R(I;) and a : Y — T are as in Theorem 1.3.3. Then the natural extension

of v to a homomorphism ¥ : M(G,) — M(G;) has range &(a).

Proof. Sincea(Y) € R(I}), there is a measure p € M(G;) with i = Xo(vy? and it
follows that B(a(Y)) = B(I1)|a(y)- Thus it suffices to show that for each u € &(a)
that i o a™ € B(a(Y)). For this it suffices, by Theorem 1.4.1 to prove the case
where Y € Ro(I;) and « has an affine extension @y : E — I3, and E = Ey(Y).
Let = be the closed subgroup such that a; o Q= is injective. We can now apply a
modified version of the “smudging” technique used in Lemma 1.5.1, using the set
F C = such that S+ (ApNZ) =S+ F =S+ F in Proposition 1.4.12 in place of
the set F' from Lemma 1.4.3. Since = C Aq = E; — Eo, we have that the smudging
technique gives ji; € &(ai) with fi; - x,, = ji. We can now apply the case of a
quotient by a closed subgroup, analysed above, to obtain ji; o ai' € B(ai(Eo)),
giving finally i oa™ € B(a(Y)). 8

A.2. Extensions of Group Algebra Homomorphisms

We now investigate homomorphisms M(G,) — M(G:) that arise from proper
piecewise affine maps a@ : Y — I}. This is considerably more fruitful than the
non-proper case.

We start with the case where Y is an open coset in [ and @ : £ — I is
affine. In this case we can argue as in Lemma 1.3.4 almost verbatim, starting with
p € k(a), and deducing that g o a™ € B(a(Y)). Then B(a(Y)) = B(T1)|aqr), s0
that there exists go € M(G1) with fio|a(yy = 20 @™, and hence v(po) = p.

The next case is analogous to Lemma 1.5.1. When Y € Ro(I2) anda : Y — [§

has a proper affine extension a; : Eo(Y) — I}, we can apply the same “smudging”

argument (by a compact subgroup) to p € &(a), giving iy = Fly, for some

F € &(a;). Then Foa;' € B(I)|a(go(s)), 2and so fioa™ € M(T1)|a(s), as required.

It is the final step of combining affine pieces that causes us difficulties.
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A.2.1. Example. Let G; = R, G, = T, so that [} = R and I; = Z. Take any
irrational ¢ € R, and define a : Z — R by a(2n) = {n and a(2n + 1) = 2n + 1.
Then x(a) = L*(T), so that the homomorphism v : L'(R) — L'(T) determined by
(u(f))A = foaisonto. However, v has a unique extension # : M(R) — M(T) that
is not onto, as we will now show. Let y; = 1/2(8;+6_1) € M(T). Clearly ji, = x,,,
so if yy € M(R) had #(y;) = pa, then the uniform continuity of f; would be
contradicted by 1;(¢éZ) = ji;(a(2Z)) = {1} and 1(2Z + 1) = u(a(2Z +1)) = {0}.

So we see that for a homomorphism v : L'(G;) — L'(G.), it may occur that
rng » is properly contained within %(a). The difference between this case and that
in Theorem 1.5.6 is in Lemma 1.5.3. Some partial results are possible, however.
This stems from the observation that the uniform continuity of fi; played a vital

role in Example A.2.1.

Recall from [5] that two sets A, B C T are called uniformly separated if there
is a neighbourhood U of ¢ € T such that A + U and B are disjoint. We can
then call a finite family A;,..., A, of closed sets uniformly separated if they are
pairwise uniformly separated. Clearly this holds if and only if each Ay is uniformly
separated from {J,, A;. In the following theorem, we use the equivalence of uniform
separation of sets A, B € R.(T') and the existence of a separating measure for A, B;
that is, a measure g € M(G) such that f takes the value 0 on A and the value 1 on
B. The existence of such y is dealt with in [5].

A.2.2. Theorem. Suppose Y € R(I;) and « : L'(G;) — L'(G,) is a proper
piecewise affine map, and for some Si,...,S, € Ro(I3) with Y = |J] Sk, each
als, has an affine extension, and a(S,),. .., a(S,) are pairwise disjoint. Then with
v : M(G,) — M(G;) the algebra homomorphism determined by «, rngv = &(a)
if and only if a(S,),...,a(S,) are uniformly separated.

Proof. Suppose rng 7 = &(a), let 1 < k < n. Then by Theorem 1.3.2, there is a

measure (x € M(G,) such that { = Xs, - It is now clear that (x € k(a), so that by
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hypothesis, there exists ux € M(Gy) with #(px) = (k. Then fix is 1 on a(Sx) and 0
on a(S;). Hence, by [5, Theorem 0.1], a(Sk) and a(S;) are uniformly separated.
Conversely, if a(S1),...,a(S,) are uniformly separated, then by [5, Theo-
rem 0.1], there exist &;,...,¢, € M(G;) such that for each k, {k( W= {1}
and & (U4 @(5;)) = {0}
Take p € k(a). Then by the arguments above, we have for each k that there
exists px € M(G,) such that i o (a|s,)™ = pilaesy)- Now put g’ = Y7 & * .

Then each y € Y lies in some S, so

Hoaly) =Y &a(y))
k=1

as required.

For the case where the a(S;),...,a(S,) are not disjoint, we start by showing
that to determine whether rng # = &(a), it suffices to know a(Y), the range of a.
This reformulation of the problem is based on Lemma 1.2.4, where we introduced
the concept of looking for an extension for foa? (f € kg(a)). In the case
of homomorphisms between measure algebras, we are not considering the carrier
spaces, as we were in Lemma 1.2.4, but the same idea applies.

Recall that by the construction in Example 1.6.6, a set X € R(T') is a piecewise
affine set, and so we have definitions of A(X) and B(.X) from definition 1.6.4. The
proof of Theorem 1.5.6 can then be divided into two stages—firstly showing that if
f € k(a), then foa™ € A(a(Y)), and then showing that A(a(Y)) = A(T1)|aqy).
A similar technique is applicable in the case where we have a homomorphism

7 : M(G,) — M(G;) that is obtained by extending v : L'(G1) — L'(G>).

A.2.3. Definition. Let X € R.(T). We say that X has the Fourier-Stieltjes
extension property (FSEP) if B(X) = B(T')|x.

A.2.4. Theorem. Suppose a : Y — I is a proper piecewise affine map. Then
rng ¥ = k() if and only if a(Y) € R.(T}) has FSEP.
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Proof. Throughout this proof, we will suppose Y = S; U --- U S,, where each

Sy € Ro(I2) is such that a|s, has Ex = Eo(Sk) and a continuous affine extension

ay : By — I. We also take § € M(I;) with fk = Xs,-

Suppose a(Y) has FSEP and g € &(a), then u *x & € &(als,), for each
1 < k < n. It follows from the discussion in the introduction to this section that
(u* &) o (als)™ € B(a(Sk)). But (1% &) o (als,)” = f 0 aas,), and
since o(Y) = U] a(Sk), we have ji o @' € B(a(Y)). Thus by FSEP, there exists
p' € M(Gy) with @|ayy = fi 0 @, and then v(4') = p.

Conversely, if rng # = &(a), then any F € B(a(Y)) has F o @ € B(T}), and
clearly F o a™@ € &(a), so that F o a € tngi. Let yo € M(G;) be such that

D(po)A = F o a, then fip o a@ = F 0 a, so that fig|oy) = F. =

We can now generalize the argument in Theorem A.2.2 to give the following

result.

A.2.5. Theorem. Suppose X € R.(T) is a piecewise affine set, say X = |J} Xk,
for some disjoint X;,..., X, € R.I') such that each X is in the coset ring of
a closed coset Ey. Then X has FSEP if and only if Xi,..., X, are uniformly

separated. [

This theorem now allows us to characterize FSEP for sets X € R.(T") that
are discrete. This leads to a result (Corollary A.2.9) suggesting a link between the
property of X € R.(T') having FSEP and the property of Z(X) having a Banach
space complement, as investigated in the papers [1, 2, 3, 4]. This link will be further

investigated later in this appendix.

A.2.6. Definition. A set X C I is uniformly discrete if there is a neighbourhood
of e € T such that for any z € X, (z + U) N X = {z}.

A.2.7. Lemma. If X C T, the following are equivalent :

(i) X is uniformly discrete,
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(ii) e is an isolated point of X — X, and
(iii) if U and V are disjoint subsets of X, then U and V are uniformly

separated.

Proof. Clear.

A.2.8. Theorem. A discrete set X € R.(T') has FSEP if and only if X is

uniformly discrete.

Proof. By [4, Lemma 2.2], for any discrete X € R.(T), there exist discrete cosets
Ey,...,E,inT and for each k, some Sy € R(Ey), such that X = |JI Sk. By Theo-
rem A.2.5, it suffices to show that X is uniformly discrete if and only if S;,..., S,
are uniformly separated. The “only if” part of this follows from the implication
(i) = (iii) in Lemma A.2.7. Supposing Sy, ..., S, are uniformly separated, then
there exists U C T, a neighbourhood of e, such that for each j, k, with j # k,
(S;+U)N Sk = 2. Then

n n

Un(x-x)=Un (s - 50) € Un (JE - E),

1 1

and each Fy — F is a discrete subgroup of I, so that e is an isolated point of X — X.

Hence, by Lemma A.2.7, X is uniformly discrete. -]

A.2.9. Corollary. A discrete set X € R.(I') has FSEP if and only if Z(X) has

a Banach space complement in L'(G).

Proof. Suppose X = S U ---U S,, where for each k, Sy € R(Ex) and Ex is a
discrete coset. By [4, Theorem 2.3], Z(X') is complemented if and only if the S are

uniformly separated. We have seen that this occurs if and only if X has FSEP. =
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The Fourier-Stieltjes Extension Property

in a Pair of Subgroups

In this section we characterize the Fourier-Stieltjes Extension Property in sets
X € R(T) of the form X = A U Z, where A and = are closed subgroups of T'.
By translation, this also characterizes FSEP for sets that are the union of a pair of
intersecting closed cosets. Since we have already characterized FSEP for a pair of
non-intersecting cosets in Theorem A.2.5, we can completely describe FSEP for sets
that are the union of a pair of closed cosets. As one may expect, uniform separation

again makes an appearance.

We start with a general result on FSEP.

A.3.1. Lemma. Suppose X;, X, € R.(I') and X; has FSEP. Then X, U X; has
FSEP if and only if any F € Ip(x,)(X1 N X3) has an extension in Ipr)(X2).

Proof. Suppose Ipx,)(X1 N X3) = Ip(r)(X2)|x, and F € B(X; U X3). Since X3
has FSEP, and F|x, € B(X;) there exists F; € B(T) such that Fy|x, = F|x,. Then
Flx, — Filx, € Ipx,)(X1 N X3), so by hypothesis, there exists F; € Ipr)(X2)
with F|x, — Filx, = Fa|lx,- Then F; + F; € B(T), (Fy + F2)|x, = F|x, and
(Fy + F,)|x, = F|x,.- Hence X; U X; has FSEP.

Conversely, if X; U X; has FSEP and F € Ig(x,)(X1 N X2), then we can extend
F to F; € B(X, U X;) by setting F1(X;) = {0}. Then by FSEP, F; extends to
F, € B(T'), which is the desired extension of F. (]

Thus, if we are considering whether the union of a pair of subgroups A U =

has FSEP, we need to be able to extend any F € Zg)(A N E) to F' € Ipr)(Z).

For this, we need to examine the standard method of extending a Fourier-Stieltjes
transform on a closed subgroup of a locally compact Abelian group to a Fourier-
Stieltjes transform on the entire group. We take a definition from [32, 8.1.9], where

the non-Abelian case is also considered.
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A.3.2. Definition. Suppose G is a locally compact Abelian group with a closed
subgroup H. We call a function a function 8 € C;(G) a Bruhat function for the
quotient G — G/H if for any compact C C G, we have Blcyn € Co(C + H),
and for each z € G, [, B(z + £) dé = 1. (The first condition here is equivalent to
Ble+r € Coo(G)|c4+H, the criterion given in [32, 8.1.9], by a simple application of
the Tietze Extension Theorem.) The existence of such f for any closed subgroup
of a locally compact Abelian group is shown in (32, 8.1.9]. For such 3, we have a

continuous linear mapping T3 : Co(G) — Co(G/H) given by

Ty p($)(z + H) = /H $(o + 1)B(z + v) Da(y).

Moreover, by [32, 8.2.7], the above formula defines a continuous linear mapping

Cy(G) — Cs(G/H). This extension will also be denoted T4 s.

Let Ty 5 : M(G/H) — M(G) be the adjoint of Ty . As stated in [32, 8.2.7],
Ty; 5 is a right inverse for Ty : M(G) — M(G/H), and since Ty is determined
by (TH( ))A = ji|a, the function T} ; extends Fourier-Stieltjes transforms. More-
over, it is shown in (32, 8.2.7], that if ¥y € Cy(G/H) and p € M(G/H) then
Jo v d(Tr ) = fG/H Thp(tp) dp. We will show that if we can find a Bruhat func-
tion 3 for the quotient G — G//H that is constant on cosets of C, then Tj; 5 maps

IB(,\)(A N Z) into Ipr)(Z).

We first establish some results on using T4 to integrate a function in Co(G/H).

A.3.3. Lemma. Suppose G is a locally compact Abelian group with closed
subgroup H. If ¢ € Cy(G/H) and p € M(G), then

/G b d(Tarp) = /G b o Qu du.

Proof. For u € M*(G) and ¢ € C;(G/H), we have by the regularity of x and
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Tyy, that

SUP{ Yo d(Twp) : o € Cg (G/H), ¥o < ¢}
G/H

sup{ /G drdu - Yo € CHGIH), $ € CHO),
V1 < Yoo Qu Sd)OQH}

il /¢0deu=sur>{/ oo s+ e GG ot sony}.
G G

But if ¥, € C&(G) has ¢; < ¢ o Qpu, then ¥o(r + H) = maxyen Y1 (z + y) defines
Y, € CF(G/H) with ¥, < 9o 0 Qu < ¥ o Q. Thus the above two integrals are

equal. The general case follows by the Hahn-Jordan Decomposition Theorem. =

A.3.4. Corollary. Suppose p € M(G) has fil]a = 0. If 3 € Cy(G) is constant
on cosets of H, then sz,/)du =1 (]

A.3.5. Definition. [4, 3.6] Suppose A, = are closed subgroups of I'. We say (A, =)
satisfies (D) if (A + Z)/(ANZ) = A/(ANZ) & Z/(ANE). (Remember that here,

“@” means that we have a topological direct sum.)

A.3.6. Theorem. Suppose A and = are closed subgroups of a locally compact
Abelian group G, with annihilators H and K respectively. Then the following are
equivalent :
(i) (A,Z) satisfies (D),
(ii) (H, K) satisfies (D),
(iii) A U = has FSEP, and
(iv) (A U Z) has a Banach space complement in L'(G).

Proof. The equivalences (i) <= (ii) <= (iv) are proven in [4].
Suppose A U = has FSEP. We show that 7 : A/(ANZE) x E/(ANZ) —
(A+Z)/(ANE), givenby (A + (ANZ),E+(ANE) = A+£+(ANE)is

bicontinuous. It is clearly continuous.




The Fourier-Stieltjes Ertension Property in a Pair of Subgroups 103

Let Uy € A/(ANZ) be a neighbourhood of e, and let fo € A(A/(ANZ)) have
support in U; and fo(e) = 1. Define f € B(AUZ) by f|a = foo Qanz and f|z = 1.
By FSEP, there exists 4 € M(G) with fi|suz= = f. Then with U] = Q3L=(U,), we
have i(Z) = {1} and (A \U;) = {0}. Hence = and A \ U] are uniformly separated.
Let Vi C T be a neighbourhood of e such that (= + V)N (A \ Uj) = @. Then
(G+S)NACU o in(A+5)C U +E

Similarly, if U; € Z/(A N Z) is a neighbourhood of e, there exists V; C T, a
neighbourhood of e with V; N (A +Z) C U; + A. Put V = Vi NV, then V is a
neighbourhood of e with VN (A +Z) C (U; +Z)N(U; + A). Moreover, U; C A and
U CE,s0 (U1 +2)N(Uz 4+ A) C Uy + Uy + (ANE). Hence Qanz(VN(A+3)), a
neighbourhood of e in (A + Z)/(A N Z) is a subset of 7(U; + U,), so that 7 is open.

Conversely, suppose (A, =) satisfies (D). Note that if we put I' = A + = C T,
then B(I") = B(T)|r, so it is clearly sufficient to prove that A U = has FSEP in
the case A + = = TI. In this case, H N K = {e}, and since (H, K) satisfies (D), we
have H+ K = H® K.

Let ' € Cy(G/K) be a Bruhat function for the quotient

G/K — (G/K) | ((H + K)/K) = G/(H + K),

and let B = 3 0o Qx € Cy(G). Then H' = (H + K)/K = H, so providing we
choose Haar measures on all subgroups appropriately, we have for each s € K that
[y Bz + E)dAu(é) = [, B '((z + K) + n)dAw:(n) = 1. Also, if C C G is compact,
then{z € C+H : ﬂ )#0} C(C+H)NQR {z+K € Qk(C) : f'(z+K) # 0},
which is compact, since H + K = H @ K. Hence f € Cy(G) is a Bruhat function

for the quotient G — G/H, and f3 is constant on cosets of K.

Thus if go € M(G/H) has jio(Z N A) = {0}, then for each £ € =, Ty 4(¢)
is constant on cosets of K/H, so that by Corollary A.3.4, fG/H Ty 5(€) duo = 0.
Hence p = Tf5(po) has fi]s = po and fi|lz = 0. This is sufficient for FSEP, by
Lemma A.3.1. -
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A 4. Factorization in Ideals of Measure Algebras

From Corollary A.2.9 and Theorem A.3.6, it seems that X € R.(T') has FSEP
if and only if Z(X) is complemented. However, this is not the case, as we will see
later in this section. As the title of this section suggests, this construction relies on

factorization in ideals of measure algebras.

A.4.1. Lemma. Suppose X;,X,, X3 € R.(T'), are such that each of X; U X3,
X; U X3 and X, U X3 has FSEP. If T = Ig(x,)(/\’] N (X, U Xa)) factors, then
Xl U X2 U X3 has FSEP

Proof. By Lemma A.3.1, it is sufficient to extend F € T to F' € Tg()(X2 U X3).
However, if we can factor F' = Fy F,, where F\, F;, € T, then Fj € IB(X,)(XI N Xg)
and F; € Ia(x,)(Xl N Xa), and so by Lemma A.3.1, we can extend F; and F; to
F{ € Igr)(X2) and F, € Ip(r)(X3) respectively. Then F' = F{F, € Ipr)(X2UX3)

is an extension of F, as required. [

A.4.2. Corollary. Suppose X;, X3, X5 € R.(T'), are such that each of X; U Xj,
X1 U X3 and X, U X3 has FSEP. If Ig(x,)(Xl n Xg) and IB(X,)(X1 N Xz) each
has bounded approximate identity, then X; U X, U X3 has FSEP.

Proof. If Z, J are ideals of a commutative Banach algebra 2, each with bounded
approximate identity, then the term-by-term product of the bounded approximate

identities, with the product directed set, is a bounded approximate identity for

T a

We can now apply the above to the set X = (R xZ)U(Z xR)UgR C R? where
sR = {(z,y) € R?: zsinf = ycos§ }. It was shown in [4, Example 0.1(iii)], that
for such X, Z(X) is complemented if and only if tan @ is rational. However, such X

always has FSEP.
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A.4.3. Proposition. If X = (R x Z)U (Z x R)U 4R C R? then X has FSEP.

Proof. Put Ay, =R X Z,A; =Z x R and A3 = 4R C R? then each of the pairs
(A1, A2), (A1, Az), and (A2, A3) satisfy (D). Moreover, the ideals Ip,r)(A1 N Aj)
and Zp(,x)(A2 N A3) are both isomorphic to Zayr)(Z). But Iy x)(Z) has bounded

approximate identity, {e;}nen, Where e, = 6. — 3205 3" 8. Hence, by Corol-

lary A.4.2, X has FSEP. ]

The method of factoring ideals of measure algebras in the above case generalizes,
so that we can prove that for E,, ..., E, closed cosets such that any pair (E;, E;)
is either uniformly separated, or satisfies (D). This, however, does not cover [4,
Example 0.1(v)] or [1, Example 4.1], which we can prove to have FSEP by following
the same order of construction that was used to prove the ideal in the group algebra

to be complemented.

I finish with some conjectures.

A.4.4. Conjecture. If X € R.(I') and Z(X) is complemented, then X has
FSEP.

A.4.5. Conjecture. If X,Y € R(I') are such that I(X), Z(Y), and Z(X NY)
are complemented, and X UY has FSEP, then Z(X U Y) is complemented.

Even being able to prove this in the case where Y is a closed subgroup (or
coset) would be useful. The similarities in the proofs of Proposition A.3.6 and [4,

Theorem 4.4] are encouraging.

A.5. The Gel’fand Transform

It should be noted that there is another natural way in which we might be able
to characterize the range of a homomorphism between measure algebras, which is

possibly more natural than the subalgebra &(a). A conclusive result may hold if
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we instead consider the Gel'fand transform and apply Lemma 1.2.1 to the homo-
morphism 7 : M(G;) — M(G;). This gives us Y = ®rmc,) \ Zm(G,)(rng 7) and
a=rly: Yoy ®prr(G,)- Then for a as above, kar(g,)(@) € K(a). Hence there is
a possibility that rng 7 = &pc,)(@) will always hold. Considerations of this sort

are difficult, as they involve the carrier spaces of measure algebras. These are quite

inaccessible.




Appendix B. Banach Space Complements of
Ideals in Group Algebras

Let G be a locally compact Abelian group, with the group operation repre-
sented additively, and let Z be a closed ideal in L'(G). The problem of the existence
of a Banach space complement to an Z in L'(G), is equivalent to that of finding a
continuous linear projection L'(G) — Z. (We are not looking for a multiplicative
projection—such ideals we have already classified in Theorem 1.7.2.) Of the inves-
tigations into the existence of such a projection, the methods in the paper [4] of
D. Alspach, A. Matheson and J. Rosenblatt, provide the most exhaustive methods
of constructing such a projection known to the author. The paper [4] concludes
with a statement that the authors knew of no example of a complemented ideal for
which the procedure could not be applied. The question as to the existence of such
an ideal was posed explicitly in [2, Question 4.1], at least in a weaker form. Here it
was asked whether there was an ideal for which the “natural” ways of applying the

methods of [4] fail.

In this appendix, we construct two examples of complemented ideals of group
algebras. The first answers the question [2, 4.1] affirmatively, yet it does yield to

the methods of [4] in a less-than-natural manner. The second ideal constructed does

not yield to the methods in [4].

B.1. Background

The starting point for the consideration of the problem of determining whether
T is complemented is the paper [36] of H.P. Rosenthal, where it was shown that if T is
complemented, then Z(Z) € R4(T'). Since a hull is closed, we have Z(Z) € R.(T).
(An alternative approach is given in [28, Theorem 2], where it is shown that a

complemented ideal in a commutative group algebra has bounded approximate
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identity.) Since such a hull is a set of synthesis, the complemented ideals of L'(G)
can be classified in terms of their hulls. The problem is now to find suitable algebraic,
topological and combinatoric conditions on X € R (I') to characterize when Z(X)

is complemented.

In [3], Alspach and Matheson characterized the complemented ideals in L'(R)
in terms equivalent to the uniform separation criterion we saw in Appendix A.
This case was particularly simple, as any proper closed coset in R is either a
singleton or a translate of some ¢Z, and so any X € R (R) such that X # R
is discrete. Moreover, uniform separation of such cosets is easily characterized in
algebraic terms. A solution for general locally compact Abelian G is far from being a
simple generalization of this result for R. In [4], Alspach, Matheson and Rosenblatt
developed a procedure that, given certain X € R.(T'), constructed a continuous
projection, thus showing Z(X) to be complemented. It was further shown in [1] that

for the case G = R? this construction succeeds if and only if Z(.X) is complemented.

The exact criteria established in [4] will not be discussed here—they are quite
complicated. The examples discussed in Appendix A are indicative of some of the
simple ways in which a hull X € R.(I') can have complemented or uncomplemented
kernel, in that there seems to be some involvement of uniform separation. Further
instances of this will be seen in the examples in the next section, and in the two
examples around which this appendix is based. The aspect of the construction in [4]
that is crucial for our purposes is the manner in which the projection is constructed.
This is done by taking a decomposition of X € R.(I') as was achieved by Schreiber
in [38, Theorem 1.7], that is, X = |J] X, where each X} is in the coset ring of some
closed coset Ex C R(T). If such a decomposition can be found with Z(X;U- - -U X})
complemented in Z(X; U ---U Xj_) for each 1 < k < n, then we can construct a

projection L'(G) — Z(X) simply by composing the chain of projections
LNG)Y = Z() = T(X5) = s 2= LA A X e i e 50,

Some features of this construction suggest that there may be difficulties with

working with it in general. In particular, it imposes an order, which we call an
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order of assembly of X, ..., X,. Moreover, for certain hulls, the order of assembly
i1s critical in constructing the desired chain of projections. Examples of this are (4,
Example 0.1(v)] and [1, Example 4.1], which appear below, slightly modified, as
Examples B.2.3, and B.2.4.

The other point to note is that “uncomplementary” behaviour of a hull tends to
be a localized phenomenon, in that if X € R.(T') is the hull of an uncomplemented
ideal, then there is a set Xo € R (T) such that if U is a neighbourhood of X, and
X'NU = XNU, then I(X') is uncomplemented. It tends to be around this set X,
that the failure of some sort of uniform separation occurs. This observation will be

formalized and used below.

In Sections B.3 and B.5 we use these two features to construct two hulls
X € R(T') with complemented kernel, but for which there is no order of assembly
that gives a chain of projections. The first example is a union of closed subgroups
Ay, ..., Ay such that the behaviour of X = |J] A near certain subgroups Ay, ..., A,
is similar to that of certain basic examples for which the order of assembly is critical.

More precisely, for 1 < k < m, if we let Jx be those j for which A; intersects Ax

(other than at 0), and let Xy = |J,¢;, A;, then the construction is such that Z(Xj)

is an instance of one of the basic examples in Section B.2 which is complemented but
for which certain orders of assembly do not give a chain of projections. Moreover,
the example is set up so that any overall ordering of {1,...,n} will give an ordering

on at least one of the sets J, for which there is no chain of projections.

Section B.4 introduces some methods which enable the demonstration of com-
plementedness of this Z(X') and the non-existence of a chain of projections based
on an ordering of the subgroups Ay, ..., A,. This provides an explicit answer to the
question [2, 4.1] of D.E. Alspach. These methods involve considering the behaviour
of each part of a such a complicated set X in a local manner, and then using a

partition of the identity to combine the separate parts.

The example of Section B.3 does not demonstrate conclusively the inadequacy

of the methods of [4], as it is possible to construct a chain of projections as above,
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where each X is a proper subset of some A;. Thus, if we partition each A; into
smaller pieces, each in R(A;), and then assemble these pieces in a particular order,
we can find a chain of projections. It is therefore desirable to find an example for
which we cannot even accomplish this. Section B.5 is devoted to constructing such
an example, and so completes the demonstration of the need for more complete

methods than those of [4].

B.2. Basic Examples
We have the following examples, based on previously-known results.

B.2.1. Example. Let Ey,..., E, be Euclidean cosets in R™ and put X = |J] Ex.
Then Z(X) is complemented. (By [4, Theorem 3.12.])

B.2.2. Example. For £,& € R™, and linearly independent a,b,c € R3, let
A = §Za + Rband A; = €Za + Re. Then I(A; U A;) is complemented if and
only if £, and &, are rationally dependent. (By [4, Theorems 3.11 and 4.4.])

B.2.3. Example. As in Example B.2.2, put A; = Ra, then Z(A; U A; U Aj)
is complemented. (A trivial generalization of [4, Example 0.1 (v)].) There exist
projections Z(A;) — Z(A; U Az), Z(A2) — I(A2 U A3), Z(As) — Z(A, U A3), and
Z(A3) = Z(A2 U A3), but not Z(A;) — Z(A; U A,), or Z(Az) — Z(A; U Az), unless
£1/& € Q. Thus, if £/, ¢ Q, any order of assembly must add A; or A, last.

B.2.4. Example. Asin Example B.2.2, let d, e € R® be such that d ¢ span{a, b}U
span{a, c} and e € span{a, d}\(RaURd). Put Ay = £1Za+Rd and As = é;Za+Re,

then Z(A; UA, UA4U As) is complemented. (Here we have three planes, span{a, b},
span{a, c}, and span{a, d} = span{a, e}, with a common intersection Ra, such that
each of the first two planes contains a set of parallel lines, whilst the third plane
contains a parallelogram grid with sides parallel to Rd and Re.) This is a trivial

reworking of [1, Example 4.1], and the proof of complementedness remains the same.
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Again, in the case /€, ¢ Q, the only orders of assembly that lead to a chain of

projections are those which add A; or A, last.

These last three examples each retains the same properties if Z is replaced by
7Z-Z + 1/2 in the definitions of A;, Az, A4, and As. This fact will be used in the

example in Section B.5.

B.3. Building a Hull in R?

Consider a Euclidean group R". We will often refer to elements of R" as points.
We will also use the terms line, grille, and plane to refer to closed cosets in R™ that
are affinely homeomorphic to R, R x Z, and R?, respectively. These will generally be
of the form Rz + z, Zz + Ry + z and Rz + Ry + z, respectively, where z, y,z € R"
and {z,y} is linearly independent. (In particular z # 0 and y # 0.) If z and
y # 0 are two linearly dependent vectors, we will use z/y for the value ¢ € R such
that {y = z. If z,y € R" are linearly independent, and z € (Rz + Ry) \ Ry, say
z = {x+(y, then for any nonzeron € R, (nZz+Ry)NRz = |p/€|Z=. Consequently,
if z, y, and z are colinear, then ¢ + ( = 1 and £ = (z — y)/(¢ — y). Hence

L — I—y .
(nZz + Ry) N Rz ”’z_y‘Z“

We will often define a line in terms of points lying in it, for instance, if a, b, ¢, d, . ..

are distinct points all lying in a line A, then ab, bd, abe, abcd. ... are all possible
descriptions of A.
Define points P = {a,...,i} C R* x {1} C R? as follows :
(3 Diak2lfl)s s (lalind 4:1);
(L3l 0 B =l (s AT
(—=21,-21,1), = (-14, 0,1),

we then have lines A\, = age, A\, = bAf, \. = cid, A\q = dgb, A\, = ehe, As = fia,
M= gfc, My = hda, and A; = ieb. Note that if ¢ € P, then z € A, and
{p € P : ¢ € \,} has three elements, as does {p € P : p € A\;} = A\, N P. (This
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is a solution to the tree-planting problem “plant 9 trees so that there are nine rows
of three trees in each, each tree being in three rows.” Such problems often occur in
recreational mathematics.) A sketch of this figure would probably be quite useful
to the reader. For each p € P, let 7, = span \,, the plane containing 0 and A,.
The lines {), : p € P} have seven extra points {t,...,z} = P’ at which there are

pairwise intersections. These are

Now take £;, &, &3 € R pairwise rationally independent, and put
As = &Zu+ Ra, Ay = E&Zz + Rd, Ay = §Zt + Ry,
Ay = 6Zv+ Rb, A. = &EZy + Re, Ay = EZt + Rh,
Ac=&Zw+ Re, Ay =&EZz+ RS, A = &4t + Ra.
so that if &, = u, Uy = v, 0 = W, Uy = o, U =1, Uy — 2, Ug — Hp= ;= 1;and
b=&G=E(=68=¢( =& =&, and § = & = & = &, then for each p € P,

A, = &,Zu, + Rp. Thus, for each p € P, A, is a grille with Rp C A, C 7,. Also,
note that if p,p’ € P and A, N A,y = Ay, then &, = & if and only if ¢ € P’. Define

s U A, and Xp= U Rp.

p€EP pEP
For each p € P, consider X near the line Rq. We have

¢ = anAp=an”p:{0}’

1€ X\ {p} = RanA, = Ren (62w, + Rp) = &[2—L|2q,

and ¢g=p = RgNA, =Rg.
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Now, for each ¢ € P U P’ define X, € R.(T) by
1P = X,=Rqu |J A, =Reu J g|2=
pEP\{q} pEP\{q}
9€Ap g€EAp
andge P — X UA,:Ufpup_p‘Zq—HRp.

pEP pEP q p
gq€ANp q€Ap

p’Z
+ Rp,
P sl

Note that if g € PUP"\{t}, then {p € P\{q} : ¢ € ), } has two elements, say p;, p,.
Then ¢ = X, N Ay, 50 &, = &, if and only if ¢ € P’. Moreover, for each p € P,
|(up — P)/(q — P)| € Q, s0 that &, |(up, — p1)/(g — p1)| and &, |(up, — p2)/(q — p2)|
are rationally dependent if and only if ¢ € P’. Hence, if ¢ € P, then X, is an
instance of Example B.2.3, in the rationally independent case, and if ¢ € P' \ {t},

complemented. Finally, X; = (&Zt 4+ Rg) U (§Zt + Rh) U (£3Zt + Ri), which can

be shown to have complemented kernel using [4, Theorem 3.11].

We now indicate how the localization will occur. (A formal procedure will be
described in Theorem B.4.4 below.) Firstly, take a neighbourhood U of 0 € R™ such
that X N U = X, N U. For each ¢ € P U P', take a neighbourhood V, of Rq such
that X NV, = (Xo U X,)NV,. Moreover, if we take all the neighbourhoods V, small
enough, we can assume that for distinct ¢,¢' € P U P', V, N Vg € U, and then for
eachqg, XNV, \U =X, NV, \U.

B.4. Banach Space Complements to Ideals in L' (R")

We now need some results to deduce the complementedness of Z(.X') from the
complementedness of the ideals Z(.X,). Note that we are looking for a splitting map

for the exact sequence
0 — I(X) - LYG) % LN(G)/T(X) = 0

where ¢ : Z(X) — L'(G) is the inclusion map, Q : LY(G) — LY(G)/I(X) is

the quotient mapping, and a splitting map is a right inverse for Q, that is, some
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T : LY(G)/I(X) — LYG) such that @ o T is the identity on L'(G)/Z(X).
Also note that by Proposition 1.6.10, L'(G)/Z(X) = A(X), and so it turns out
that we are looking for a continuous linear right inverse to the restriction mapping
px : A(T) = A(X). Such a right inverse to px we will also refer to as a splitting
map.

It can be seen that the results of Section 1.6 supplied a right inverse to px,

since there we proved that A(X) = A(T)|x. The present task is considerably more
difficult.

The same can be said of the question as to whether Z(X)/Z(W) is com-
plemented in L'(G)/Z(W), for X,W € R.T) with X C W. In this case,
LY(G)/ZT(W) = AW), Z(X)/I(W) = Zyw)(X), and A(W)/Zaw)(X) = A(X),
so we are looking for a continuous linear right inverse to the restriction mapping
px : A(W) — A(X).

With such concepts, we have the following.

B.4.1. Lemma. Suppose X,W € R.(T') and X C W. If Z(X) is complemented
in L'(G), then T (X) is complemented in A(W).

Proof. If T : A(X) — A(T) is a splitting map, then pw o T : A(X) — A(W) is

clearly a splitting map. ]

B.4.2. Lemma. Suppose X, W € R.(I'), X C W and Z(W) is complemented
in LY(G). If Tow)(X) is complemented in A(W), then I(X) is complemented in
L'(G).

Proof. We have splitting maps Tx : A(X) — A(W) and Tw : A(W) — A(I).
Then T' = Tw o Tx : A(X) — A(T') is a right inverse of px. ]

B.4.3. Lemma. Suppose W, X;,...,Xn, X € R(T) and Fy,...,F, € B(W)

are such that

() XcUiXecW,
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(ii) for each k, either X C X; or X; C X,

(iii) for each k, Fi(X A Xi) = {0},

(iv) 31 F(y) =1 for v € X, and

(v) each Tw)(X) is complemented in A(W),
then Tyw)(X) is complemented in A(W).

Proof. Let T} : A(Xy) — A(T) (1 < k < n) be splitting maps, and let f € A(X).
For each k such that Xi C X, put fi = Fi - Ti(f|x,) € A(W), so that if vy € X,
then fi(y) = Fi(7)f(7). For each k such that X C Xj, we have Fi|x - f € A(X)

is zero on X N X \ X, so we can define

F ifye X,
i ):{ k(1) f(v) ify

| 0 ify € Xe\ X.

Then f is continuous, and since X; \ X € R.(T') and f,ilm =0 € A(X: \ X).
It follows that f; € A(X). Moreover, providing we choose charts for X, such that

each chart has range either within X or X} \ X (or both) then

"fi "A(_\',‘) ¥ "fl,cl\ ”A(_\’) s ”f’,fl.\’nm",«i(,\'n,\’_k\f) + "fllclm"uT\\)
= "Fklx : f"A(X) +0+0.

Now put fy = Ti(f) € A(W), so that if v € X, then fi(y) = fi(7) =
Fi(7)f(7)- Now define T(f) = 7 fi, then T : A(X) — A(W) is linear and
IT(H] < ST |Fe]Jf], so that T is continuous. Finally, for each v € X,
T(f)(7) = TFF(1)f(7) = f(7), so that T : A(X) — A(W) is the desired

splitting map. [

Now suppose X C R" is a union of grilles Ay, ..., A,,. For each 1 < k < m,
let 7x be the plane containing Ag. Also let £ be the set of all lines that occur as
the intersection of two (or more) planes 7, and let P be the set of all points that

occur as the intersection of two (or more) planes 7. For each A € L, and each
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1 <k < m put

Xy = J{Ak: 1<k <m X € A Cmi}
AUX, if Ve X

Xy =
X} if\ g X

Xk =U{Aj:7rj =7rk}

B.4.4. Theorem. With such X, I(X) is complemented if and only if each of the
ideals in

{Z(X,) (A EYUALT(Xe) - 1 <k < mnl

is complemented.

Proof. Put W = |J]" m, then X € W € R(I') and as an instance of Exam-
ple B.2.1, Z(W) is complemented. Thus, by Lemma B.4.2, it is enough to show that
Zaw)(X) is complemented in A(W) if and only if each Z(Xj) is complemented in
A(W).

For each p € P, put X, = U{) € £ : p € A € X}. This is as in Exam-
ple B.2.1, so Z(X,) is complemented. Let U C R" be an open neighbourhood of 0
such that for each p € P, (p+2U) N X = (p + 2U) N X,. Then in particular, for
eachp;,p, € P, (;mp+U)N(p2+U) = @.

Now, if A € £ and 1 < k < m, we consider four cases :

(i) ANm =2,

(i1) A N 7 = {p}, for some p € P,

(111)) A € mx, but A € Ay, or

(iv) A C A4

)
)

In the first case above, there exists V), C R", a neighbourhood of 0, such that
(A+Vax) N (7 + Vax) = 2. In the second case, consider Vp, the closed unit ball in
R". Then (A + Vo) N (mx + Vo) is a compact neighbourhood of p. Putting Vyx = eVo,
then (A + Vax) N (7 + Vax) € U + p, for some sufficiently small ¢ > 0. In the
third case, Ay € X, put Vo, = R". In the fourth case, there exists Vyx C R", a
neighbourhood of 0, such that (A + Vi) N (Ax \ A) = @.
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and if p € P, define

Anme={p}
and put V = U,er(Vs — p). Then V is a compact subset of U. (If P = @, then

V = @—this will not concern us, as we will only use V if there is some puc' P.)

Now, for each p € P, let f, € A(R™) be such that f,(p + V) = {1} and
fo(R*\ (p + U)) = {0}. Then {1‘ € X o ofs(z)it 0F € X5 Forseachiho6s L,
let F\ € B(R") be such that F{(A\) = {1} and F}(R"\ (A + V))) = {0} and put
F\ = (1—2,,61: fp)F)" € B(R"). Deﬁneg — ( — peP f,,)( ZAEC F/() € B(R").
Then ZPE,, o+ Yoses B g =4

Note that for distinct p,q € P, filz) # FEN=UN WpiE¥ 80 ¥so*that
Y,ep fo(z) = Lforally € P+ V. Also,if A\ € Land 1 < k < m with
A & 7, then we have case (i) or case (i1) above. Thus (A+ V)N (7 + V) = S or
(A4 V)N (7 + V) C V + p. In either case (A + V) N (7x + V) C V + P. Hence,
if z € m + V is such that Fy(z) = 0, then EPE,, fo(z) = 1. 1t follows that Fy = 0
on 7. Moreover, if A C Ag, then A + V and A4 \ A are disjoint, so that F\ = 0 on
Ak \ X. Thus {y € X : F\(7) # 0} C X,.

Also, if A, X' € L are distinct, then there exists some 1 < k < m with A Z =,
e A ey Mhien [ VN7 T A (X Ve £ H 0 (e 4 Vak) VB Fenee
if z € L, then either 3 p fo(z) = 1or 35, FA(z) = 1,and sog = 0 on |J £.
Hence, for each 1 < k < m, we can define g, : W — C by

gx(7)

{9(7) if JE myy

0 otherwise.

Then gk|r, = glr. € B(mi) and if j # k, then gx|,, = 0 € B(m;), so that
gr € B(W),and {z € X : gi(z) # 0} C m \ (UL) C Xix. Also YT gx = g, s0
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DSk fp|w Y e Fw + ZISkSm gr = 1. We can now apply Lemma B.4.3 to
conclude that Zw)(X) is complemented in A(W), as required.

Conversely, suppose I(X) is complemented. Then for each 1 < k < m,
T4(r,)(X N7y) is complemented in A(my). However, A(7;) = L'(R?), and so we can
use the characterization of the complemented ideals in L'(R?) from [1]. In particular,
if we have a hull X’ = |J; X; € R.(R?) such that Z(X"’) is complemented, then if
weput I' = {k € I : X} is a grille}, then Z(|J;, X;) is complemented in A(my).
Consequently, Z4(r,)(Xx) is complemented in A(7x), and so Z(X}) is complemented
in L'(R"™).

Similarly, if A € A and A C 7, then we can show that Zu(.,)(X\ N m%) is
complemented in A(mg). Also, for each p € P, I(X, N X)) is complemented.
Clearly

X cxu |J (xanm),

1<k<m

ien
and we can use the functions
gl ! 1NR Sfx
pE‘F’nfrk\,\
mdgy=1- Y

1<k<m

Sex:
from which point we can apply Lemma B.4.3. m

It is now a simple matter to apply this result to the situation of the hull

constructed in Section B.3, providing a positive answer to [2, Question 4.1].

B.4.5. Corollary. Let {A,},cp be the subgroups as constructed in Section B.3,
X = U,ep Ay, and for each ¢ € P, Y, = Usepviy Ap- Then I(X) is comple-

mented, but for each ¢ € P, Z(Y;) is not complemented. (]

It should be noted that despite this, it is possible to use the methods of [4] to
build a chain of projections which show the ideal Z(X) to be complemented. For
this, let p;,...,ps be the elements of P, and for 1 < k < 9 let X; = Rp; and
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Xi+o = Ap, \ Xi, so that X = |J;® Xi. For0 < k < 9, put Wi = J°** X;. Each of
X1,...,Xgis a Euclidean coset, and so as in Example B.2.1, I(Wp) is complemented.
In fact, there exists a chain of projections L'(G) — I(X;) — --- — I(W,). T
complete the chain of projections, we can use a method equivalent to that described
in the introduction to Section 4 of [4]. For 1 < k < 9, let 7y = span A,,, the
plane containing the grille A,, and put Wi = Wo U Uf 7;. Then for each k, I(Wk)
is complemented in L'(G) and Zu(r,)(mx N X) is complemented in A(my). Thus
if Z(Wk-1) is complemented, there exists a splitting map A(Wix_;) — L'(G), and
hence a splitting map A(Wj_;) — A(Wk_l). Now, Wy_; U (mx N X) = W; and
T N Wk_l C Wy C Wi, and so we can combine this previous splitting map with
a splitting map A(mx N X) — A(mx) to give a splitting map A(Wy) — A(Wk).
Composing this with a splitting map A(Wk) — L'(G) yields a splitting map
A(Wp) — L'(G), which gives the projection required.

B.5. Building a Hull in R*

Whereas the previous example had the behaviour of Example B.2.3 on each

specified line, we now specify a construction where we have the behaviour of Exam-

ple B.2.4 on each specified line.

Due to this, we need to consider having an affine image of (R x Z)U (Z x R)
on each plane, instead of just R X Z. Such a set we will refer to as a grid, which
will generally be of the form ((Ra+ Zb)U (Za+ Rb)) + ¢, for some a, b,c € R™ with
a and b linearly independent. Moreover, this needs to be done so that at each line
where the three planes intersect we have the situation of Example B.2.4, with one
of these planes taking the role of the grid plane and the other two planes behaving
as the grille planes. For this reason, we use Z in place of Z, so that if a plane «
intersects Ra + Rb in Ra, then ((Ra + Zb) U (ia +Rd)) N7 = Za, so that with
respect to its intersection with 7, (Ra + Zb) U (Za + Rb) behaves like the grille
Za + Rb.
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If we try using the same arrangement of planes as in Section B.3, it is difficult
to control the situation along the lines R¢,. .., Rz. It may be possible to ignore this
initially, and then to add extra cosets to “cover up” the non-uniformly separated bits,
in the way that the uncomplementary behaviour of Example B.2.2 can be covered
up either by A; or Ay U As, in Examples B.2.3 and B.2.4 respectively. Rather than
attempt this, we will resort to a different “tree-planting” that avoids such points as
t,...,z. Thisis done in R? instead of R? so that the resulting hull will be a subset
of R

Define points P = {a,...,j} € R® x {1} C R* as follows,

&= =Rl (s Wi =2 91
bo=nls s L=1vsg =L siifs O 1

)
)
¢ = ( 2.5 5uZil)oi b=l Uoaa 1)
d=(-1,-1,-1,1) i=( 1, 0,1)

)

e =i 1—1, I3 1/9—1/2 liald

(Here abde is a regular tetrahedron, ¢ and f are found by extending ab and de,
respectively, by half their lengths. The points g and ¢ are midpoints of the sides ad
and be, Then ¢, f, g, are coplanar, and h and j are the intersections of this plane

with bd and ae, respectively.) We have ten lines :

>
<

Il
<
-
|
_)4

Il

o

-~

(9]

Ao = abc Mg = dga

>
bl
Il
>
~
-
>
-
Il
<
~
o

A =bhd A = eja

A,::Chg Afzm

which do not intersect anywhere except for on P. Moreover, we again have that
p € P is in three lines A, and each line A, contains three points ¢ € P. We desire
a grid on each plane 7, = span A,. We next consider a procedure that allows us to
construct all twenty grilles so that each Rp intersects four grilles =, ..., =4 so that

=1 U---UZ; is an instance of Example B.2.4.
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Consider the cycles

a—b—od—oa

b—oh—1—>b

c—g— ) —c

d—g— f—d

e—jJ > 1 —>e

a—>c—h—>f—oe—a

These have the property that if z — y and £ — z both occur in the cycles, then
Az = zyz. Conversely, if A, = zyz, for z,y,z € P, then we have both z — y and
z — z in the cycles.

Now, let &, € R and put =! = ¢,Za + R, then |(a — ¢)/(b — c)| = 3, so by
the note at the start of Section B.3, =} = 3£,Zb + Re. Put =! = 36Zb + Rh.
Then |(b — h)/(d — k)| = 1, 50 5} = £,Zd + Rg. Put = S} = &Zd + Ry, then
=} = |(d - g)/(a — g)|61Za + Rg = £ Za + Rg. This intersects Za in the same coset
that =} does. Similarly if & € R, and = = £,Zb + Rd, then following around the
cycle yields eventually =7 = £2Zb + Re. This procedure is successful for every cycle

given above. Summarizing the necessary arithmetic, we have:

a—c| |b—h| |d—g
b—J'd—h'h—g
—f] |1—e€
’h—d 1 — f ‘ b—e
o=l il
g—h J—fl le=2
’ Sl _lf—
g—al If-
le—a.]—-cl. 1—b
e—b

j—a 1—c
=3 s[5
i S e e—d A

and

’a—b 'c—g h—1

c—b

Note. I do not know how coincidental this situation is—certainly we can shift
our points around somewhat with no significant effect. I do not know whether

an alternative set of assignments of the ten lines to the ten points would work or
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whether an alternative set of cycles would work. This is the first configuration I

tried, and it worked.

We now specify &, ...,& € R to be pairwise rationally independent, so that
on each of the lines Ra,...,Rj, the intersection with the cosets = occur in pairs,

at rationally independent spacings.

This allows us to explicitally specify all twenty grilles.

{,Za + Re = 3{121) + Re = &id +Rae = 2{4zg + Ra

36,Zb + Rh = &,Zd + Rh == 2,Zg+Rj =26LZf +Rj

4

6Zd+Rg = &Za+ Ry =4 = 26LZf 4+ Re = &Zd + Re

6Zb+ Rd = 4/36,Zh + Rd ¢sZe + Ra = 4/3¢5Zj + Ra
= 4/36,Zh + Rf = 26,Zi + Rf = 4/3¢5Zj + Re = 265Zi + Re
2,Zi + Re = &,Zb+ Re 5 — 26sZi + Rb = &sZe + Rb

£Zc + Rh = &Zg + Rh = €6Za + Rb = 266Zc + Rb
6Zg + Rf =26Zj + RS %sZc + Rg = 4¢6Zh + Ry
2%:Zj + Ri = &Zc + Ri 4¢sZh + Ri = 266Zf + Ri
%:Zf + Rd = 3¢sZe + Rd
3¢Ze + Rj = £sZa + Rj.

Put X = Z!U-..UZ, the union of the twenty cosets above. For some neighbourhood
U of Ra we have X N U = X, N U, where X, = Z} UZ8 U Z} U Z8. Here =} U =8
lies in the plane 7,, E}, lies in the plane 74, and Ef lies in the plane 7.. Moreover,
ZiNE = {lia and Z°N=°8 = feza, so we have the situation of Example B.2.4. It can
be similarly shown that we have such a situation near each of the lines Rb,...,Rj,

and so we can use Theorem B.4.4 to show that Z(X) is complemented.

We now show that it is not possible to apply the methods of [4] to any decom-
position of X. This could be done by using Theorem B.4.4, but it is easier in this

case to proceed directly. Suppose we have X = |J{ Sk, where each Sy belongs to
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the coset ring of one of the twenty cosets above, and that we have projections

NG — T(Sp)—s T(S1 W 55) = -mie = I(D Sk) = I(X).

Clearly we can assume that if = is one of the twenty cosets, then for distinct
J, k such that S;, Sy € R(Z), we have that S; and Si are disjoint. Hence all
of Sy,...,S, are triple-wise disjoint. (That is, the intersection of any triple is
empty.) Let m < n be such that S, _;,..., S, each consists of a finite number of
lines, whilst S,, consists of an infinite number of lines. Then Z(S,,), I(U;"_l Sk),
and Z(U" Sk) are complemented, so by [4, Proposition 1.9], Z(S,. N U™ Sk) is
complemented. However, S,, N U;"_l = ;"_I(Sm N Sk) is discrete and the sets
Sm N Sk (1 < k < m) are disjoint, so by [4, Theorem 2.3], these sets are uniformly
separated. It is now a simple, but tedious, task to show that this is not possible,

and so there is no such chain of projections.
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